A Journal "Theory of Probability and Mathematical Statistics"
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



THE STUDY OF BASIC RISK PROCESSES BY DISCRETE-TIME NON-HOMOGENEOUS MARKOV PROCESSES

G. D'AMICO, F. GISMONDI, J. JANSSEN, R. MANCA, F. PETRONI, E. VOLPE DI PRIGNANO

Download PDF

Abstract: This paper elaborates how it is possible to calculate precisely the aggregate claim amount and the claim number by means of Markov reward models in a non-homogeneous time setting. More precisely, evolution equations of the non-homogeneous Markov reward processes are presented in a discounted environment for the calculation of the aggregate claim amount and in a non-discounted case for the calculation of the claim number. The underlying Markov process has a denumerable number of states. In the last section, an application of the proposed models is presented using real data obtained by merging databases of two small insurance companies. The results highlight the importance of the insured's age in the calculation of the actuarial quantities.

Keywords: Aggregate claim amount process, claim number process, Markov chains, reward processes, non-homogeneity.

Bibliography:
1. E. S. Andersen, An algebraic treatment of uctuations of sums of random variables, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), vol. 2, Univ. California Press, Berkeley, 1967.
2. S. Asmussen, Risk theory in a Markovian environment, Scand. Actuar. J. (1989), 69-100.
3. S. Asmussen and H. Albrecher, Ruin probabilities, Adv. Ser. Stat. Sci. Appl. Probab., 2, World Scienti c Publishing Co., Inc., River Edge, 2012.
4. V. S. Borkar and S. P. Meyn, Risk-sensitive optimal control for Markov decision processes with monotone cost, Math. Oper. Res. 27 (2002), 192-209.
5. R. Cavazos-Cadena and D. Hernandez-Hernandez, A characterization of the optimal risk-sensitive average cost in nite controlled Markov chains, Ann. Appl. Probab. 15 (2005), 175-212.
6. W. Ching, X. Huang, M. K. Ng, and T. Siu, Markov Chains: Models, Algorithms and Appli-cations, 2nd ed., Springer, New York, 2013.
7. K. L. Chung and F. AitSahlia, Elementary Probability Theory, 4th Edition, Springer, 2010.
8. H. Cramer, On the mathematical theory of risk, Skandia Jubilee volume, Stockholm, 1930.
9. H. Cramer, Collective risk theory, Skandia Jubilee volume, Stockholm, 1955.
10. G. D'Amico, J. Janssen, and R. Manca, Discrete-time Markov reward processes a motor car insurance example, Technology and Investment 1 (2010), 135-142.
11. G. D'Amico, F. Gismondi, J. Janssen, and R. Manca, Discrete-time homogeneous Markov processes for the study of the basic risk processes, Methodol. Comput. Appl. Probab. 17 (2015), 983-998.
12. R. De Dominicis and R. Manca, Some new results on the transient behavior of semi-Markov reward processes, Methods Oper. Res. 54 (1985), 387-397
13. B. de Finetti, Il problema dei pieni, Giornale dell'Istituto italiano degli Attuari 8 (1940), 1-88.
14. R. A. Howard and J. E. Matheson, Risk-sensitive Markov decision processes, Management Science 18 (1972), 356-369.
15. J. Janssen, Some transient results on the M/SM/1 special semi-Markov model in risk and queuing theories, ASTIN Bulletin 11 (1980), 41-51.
16. J. Janssen and R. Manca, Applied Semi-Markov Processes, Springer, New York, 2006.
17. J. Janssen and R. Manca, Semi-Markov Risk Models for Finance, Insurance and Reliability, Springer, New York, 2007.
18. J. Janssen and J. M. Reinhard, Probabilite de ruine pour une classe de modeles de risque semi-Markoviens, ASTIN Bulletin 15 (1985), 123-133.
19. F. Lundberg, Approximerad framstallning av sannolikhetsfunktionen. Aterforsakring av kollektivrisker, Acad. Afhaddling. Almqvist. och Wiksell, Uppsala, 1903.
20. F. Lundberg, On the theory of reinsurance (1909), History of Actuarial Science, vol. VII (S. Habermann and T. A. Sibbett, eds.), 1995, 291-344.
21. A. J. McNeil, R. Frey, and P. Embrechts, Quantitative Risk Management: Concepts, Techniques, and Tools, Princeton, 2005.
22. T. Mikosch, Non-Life Insurance Mathematics: An Introduction with the Poisson Process, Springer, Berlin, 2009.
23. M. A. Qureshi and H. W. Sanders, Reward model solution methods with impulse and rate rewards: an algorithmic and numerical results, Performance Evaluation 20 (1994), 413-436.
24. F. Riesz, Les systemes d'equations lineaires a une in nite d'inconnues, Gauthier-Villar, Paris,1913.
25. T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels, Stochastic Processes for Insurance and Finance, Wiley, London, 1999.