A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



A SEMI-MARTINGALE REPRESENTATION FOR A SEMI-MARKOV CHAIN WITH APPLICATION TO FINANCE

R. ELLIOTT, A. SWISHCHUK, I. Y. ZHANG

Download PDF

Abstract: In this paper we present the semi-martingale representation for a discrete time semi-Markov chain, and consider its application to a semi-Markov regime-switching binomial model in nance. We also introduce a semi-Markov switching Levy process. Estimation results for a Markov and semi-Markov chains are presented as well.

Keywords: Discrete time nite state semi-Markov chain, semi-Markov switching Levy process, semi-martingale representation, nancial derivatives, regime-switching binomial model.

Bibliography:
1. V. Anisimov, Switching Processes in Queueing Models, Wiley, 2013.
2. D. Applebaum, Levy Processes and Stochastic Calculus, Cambridge University Press, 2004.
3. D. S. Bates, Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options, Rev. Financ. Stud. 9 (1996), 69-107.
4. P. Bremaud, Point Processes and Queues: Martingale Dynamics, Springer, 1981.
5. J. Bungton and R. J. Elliott, American options with regime switching, Int. J. Theor. Appl. Finance 5 (2002), 497-514.
6. S. Cohen and R. Elliott, Stochastic Calculus and Applications, 2nd edition, Birkhauser, 2015.
7. E. Cinlar, Time dependence of queues with semi-Markov services, J. Appl. Probab. 4 (1967), 356-364.
8. G. D'Amico, J. Janssen, and R. Manca, Valuing credit default swap in a non-homogeneous semi-Markovian rating based model, Comput. Econ. 29 (2007), no. 2, 119-138.
9. R. J. Elliott, Stochastic Calculus and Applications, Springer, Berlin-Heidelberg-New York, 1982.
10. R. J. Elliott and C. J. Osakwe, Option pricing for pure jump processes with Markov switching compensators, Finance Stoch. 10 (2006), 250-275.
11. P. Fodra and H. Pham, Semi-Markov model for market microstructure, Appl. Math. Finance 22 (2013), no. 3, 261-295.
12. S. Goutte and B. Zou, Foreign exchange rates under Markov regime switching model, CREA Discussion paper series, University of Luxemburg, 2011.
13. J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica 57 (1989), no. 2, 357-384.
14. S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud. 6 (1993), 327-343.
15. S. L. Heston, A simple new formula for options with stochastic volatility,Washington University of St. Louis Working Paper, 1999.
16. V. Koroliuk and N. Limnios, Stochastic Systems in Merging Phase Space, World Scienti c, 2005.
17. P. Levy, Processus Semi-Markoviens, Proceedings of International Congress of Mathematics 3, 1954, 416-426.
18. N. Liminios and A. Swishchuk, Discrete-time semi-Markov random evolutions and their appli-cations, Adv. in Probab., 2012.
19. A. Melino and S. M. Turnbull, Pricing foreign currency options with stochastic volatility,J. Econometrics 45 (1990), 239-265.
20. A. Melino and S. M. Turnbull, The pricing of foreign-currency options, Canad. J. Econ. 24 (1991), 251-181.
21. R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Finance Econ. 3 (1976), 125-144.
22. K. Miltersen, K. Sandmann, and D. Sondermann, Closed form solutions for term structure derivatives with log-normal interest rates, J. Finance 52 (1997), 409-430.
23. A. Papapantoleon, An Introduction to Levy Processes with Applications to Mathematical Finance. Lecture notes, 2000.
24. R. Pyke, Markov renewal processes: de nitions and preliminary properties, Ann. Math. Statistics 32 (1961), 1231-1242.
25. R. Pyke, Markov renewal processes with nitely many states, Ann. Math. Statistics 32 (1961), 1243-1259.
26. R. Pyke, and R. Schaufele, Limit theorems for Markov renewal processes, Ann. Math. Statistics 35 (1964), 1746-1764.
27. R. Pyke and R. Schaufele, The existence and uniqueness of stationary measures for Markov renewal processes, Ann. Math. Statistics 37 (1966), 1439-1462.
28. J. Rumsey, Pricing cross-currency options, J. Futures Markets 11 (1991), 89-93.
29. W. Schoutens, Levy Processes in Finance: Pricing Financial Derivatives, Wiley, 2003.
30. D. S. Silvestrov, Semi-Markov Processes with a Discrete State Space, Library for an Engineer in Reliability, Sovetskoe Radio, Moscow, 1980.
31. W. L. Smith, Regenerative stochastic processes, Proceedings of the Royal Society of London Archives 232 (1955), 6-31.
32. A. Swishchuk, Pricing of variance and volatility swaps with semi-Markov volatilities, Can.Appl. Math. Q. 18 (2010).
33. A. Swishchuk and R. Elliott, Pricing Options. Hidden Markov Models in Finance, Springer,2007.
34. A. Swishchuk and N. Vadori, A semi-Markovian modelling of limit order markets, SIAM J. Finan. Math., 2017.
35. A. Swishchuk and J. Wu, Evolution of Biological Systems in Random Media: Limit Theorems and Stability, Springer, 2003.
36. L. Takacs, On secondary processes generated by recurrent processes, Archiv der Mathematik 7 (1956), 17-29.
37. N. Zhou and R. S. Mamon, An accessible implementation of interest rate models with regime switching, Expert Syst. Appl. 39 (2012), no. 5, 4679-4689.