A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Spectral expansions of random sections of homogeneous vector bundles

A. Malyarenko

Download PDF

Abstract: Tiny fluctuations of the Cosmic Microwave Background as well as various observable quantities obtained by spin raising and spin lowering of the effective gravitational lensing potential of distant galaxies and galaxy clusters, are described mathematically as isotropic random sections of homogeneous spin and tensor bundles. We consider the three existing approaches to rigourous constructing of the above objects, emphasising an approach based on the theory of induced group representations. Both orthogonal and unitary representations are treated in a unified manner. Several examples from astrophysics are included.

Keywords: Random field, vector bundle, cosmology

Bibliography:
1. N. Aghanim et al., Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters, A&A, 594 (2016), A11.
2. P. Baldi, M. Rossi, Representation of Gaussian isotropic spin random fields, Stochastic Process.Appl., 124 (2014), no. 5, 1910-1941.
3. D. Baskaran, L. P. Grishchuk, A. G. Polnarev, Imprints of relic gravitational waves in cosmic microwave background radiation, Phys. Rev. D, 74 (2006), no. 8, 083008.
4. T. Brocker, T. tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer, New York, 1995.
5. P. G. Castro, A. F. Heavens, T. D. Kitching, Weak lensing analysis in three dimensions, Phys. Rev. D, 72 (2005), no. 2, 023516.
6. D. Geller, D. Marinucci, Spin wavelets on the sphere, J. Fourier Anal. Appl., 16 (2010), no. 6, 840-884.
7. E. J. Hannan, Multiple time series, John Wiley and Sons, Inc., New York-London-Sydney, 1970.
8. A. F. Heavens, 3D weak lensing, Mon. Not. Roy. Astron. Soc., 343 (2003), no. 4, 1327-1334.
9. N. Jacobson, Basic algebra. I, Second ed., W. H. Freeman, New York, 1985.
10. M. Kamionkowski, A. Kosowsky, A. Stebbins, Statistics of cosmic microwave background polarization, Phys. Rev. D, 55 (1997), 7368-7388.
11. S. King, P. Lubin, Circular polarization of the CMB: Foregrounds and detection prospects, Phys. Rev. D, 94, (2016), no. 2, 023501.
12. T. D. Kitching, A. F. Heavens, L. Miller, 3D photometric cosmic shear, Mon. Not. Roy. Astron. Soc., 413 (2011), no. 4, 2923-2934.
13. A. Lang, C. Schwab, Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations, Ann. Appl. Probab., 25 (2015), no. 6, 3047-3094.
14. B. Leistedt, G. D. McEwen, Exact wavelets on the ball, IEEE Trans. Signal Process., 60 (2012),no. 12, 6257-6269.
15. B. Leistedt, G. D. McEwen, T. D. Kitching, H. V. Peiris, 3D weak lensing with spin wavelets on the ball, Phys. Rev. D, 92 (2015), no. 12, 123010.
16. N. Leonenko, A. Malyarenko, Mat ?ern class tensor-valued random fields and beyond, J. Stat.Phys., 168 (2017), no. 6, 1276-1301.
17. N. Leonenko, L. Sakhno, On spectral representations of tensor random fields on the sphere,Stoch. Anal. Appl., 30, no. 1 (2012), 44-66.
18. A. R. Liddle, D. H. Lyth, Cosmological inflation and large-scale structure, Cambridge University Press, Cambridge, 2000.
19. H. Luschgy, G. Pag`es, Expansions for Gaussian processes and Parseval frames, Electron. J.Probab., 14 (2009), 1198-1221.
20. A. Malyarenko, Invariant random fields in vector bundles and application to cosmology, Ann.Inst. Henri Poincare Probab. Stat., 47, no. 4 (2011), 1068-1095.
21. A. Malyarenko, Invariant random fields on spaces with a group action, Springer, Heidelberg,2013.
22. D. Marinucci, G. Peccati, Random fields on the sphere. Representation, limit theorems and cosmological applications, London Mathematical Society Lecture Note Series, 389, Cambridge University Press, Cambridge, 2011.
23. D. Marinucci, G. Peccati, Mean-square continuity on homogeneous spaces of compact groups,Electron. Commun. Probab., 18 (2013), no. 37.
24. D. Munshi, A. F. Heavens, P. Coles, Higher-order convergence statistics for three-dimensional weak gravitational lensing, Mon. Not. Roy. Astron. Soc., 411 (2011), no. 4, 2161-2185.
25. E. T. Newman and R. Penrose, Note on the Bondi-Metzner-Sachs group, J. Mathematical Phys., 7 (1966), 863-870.
26. A. M. Obukhov, Statistically homogeneous random fields on a sphere, Uspehi Mat. Nauk, 2 (1947), no. 2, 196-198.
27. I. Tereno et al. Euclid Space Mission: Building the sky survey, Proceedings of the International Astronomical Union, 10 (2014), no. S306, 379-381.
28. K. S. Thorne, Multipole expansions of gravitational radiation, Rev. Modern Phys., 52 (1980),no. 2, 299-339.
29. N. N. Vakhania, V. I. Tarieladze, S. A. Chobanyan, Probability distributions on Banach spaces,Mathematics and its Applications (Soviet Series), 14, D. Reidel Publishing Co., Dordrecht, 1987.
30. M. ?I. Yadrenko, Isotropic random fields of Markov type in Euclidean space, Dopovidi Akad.Nauk Ukrain. RSR, 1963 (1963), 304-306.
31. M. ?I. Yadrenko, Spectral theory of random fields, Translation Series in Mathematics and Engineering, Optimization Software, Inc., Publications Division, New York, 1983.
32. M. Zaldarriaga, U. Seljak, All-sky analysis of polarization in the microwave background, Phys.Rev. D, 55, no. 4 (1997), 1830-1840.
33. F. J. Zerilli, Tensor harmonics in canonical form for gravitational radiation and other applications, J. Mathematical Phys., 11 (1970), 2203-2208.
34. W. Zhao, D. Baskaran, L. P. Grishchuk, On the road to discovery of relic gravitational waves: The T E and BB correlations in the cosmic microwave background radiation, Phys. Rev. D, 79 (2009), no. 2, 023002.