A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



CONSISTENCY OF ORTHOGONAL REGRESSION ESTIMATOR IN IMPLICIT LINEAR ERRORS-IN-VARIABLES MODEL

O. O. Dashkov, A. G. Kukush

Download PDF

Abstract: An implicit linear errors-in-variables model is considered, where the true points belong to a hyperplane in a Euclidean space and the total error variance-covariance matrix is proportional to the identity matrix. The orthogonal regression estimator of the hyperplane is studied. Sufficient conditions for the consistency and strong consistency of the estimator are presented. The results are applied to an explicit multiple errors-in-variables model with intercept.

Keywords: Consistent estimator, errors-in-variables model, implicit linear regression, multiple linear regression, orthogonal regression, total least squares

Bibliography:
1. W. Fuller, Measurement error models, Wiley, New York, 1987.
2. P. Gallo, Consistency of regression estimates when some variables are subject to errors, Comm. Statist. Theory Methods, 11 (1982), no. 9, 973-983.
3. L. J. Gleser, Estimation in multivariate errors-in-variables regression model: large sample results, Ann. Statist., 9 (1981), no. 1, 24-44.
4. A. I. Kostrikin, Yu. I. Manin, Linear Algebra and Geometry, Series in Algebra, Logic and Applications, vol. 1, CRC Press, 1989.
5. A. Kukush, S. Van Huel, Consistency of elementwise-weighted total lest squares estimator in a mulivariate errors-in-variables model AX = B, Metrika, 59 (2004), no. 1, 75-97.
6. S. V. Masiuk, A. G. Kukush, S. V. Shklyar, M. I. Chepurny, I. A. Likhtarov (ed.), Radiation risk estimation: Based on measurement error models, 2nd ed., De Gruyter Ser. Math. Life Sci., vol. 5, De Gruyter, 2017.
7. S. V. Shklyar, Conditions for the consistency of the total least squares estimator in an errors-in-variables linear regression model, Theory Probab. Math. Statist., 83 (2011), 175-190.