Theory of Probability and Mathematical Statistics
On extreme values of some regenerative processes
O. K. Zakusylo, I. K. Matsak
Download PDF
Abstract: A general limit theorem for extremes of regenerative processes is established. Applications to birth and death processes and processes specifying queue length are given.
Keywords: Extremes, regenerative processes, birth and death processes, queueing theory
Bibliography: 1. B. V. Gnedenko, I. N. Kovalenko, Introduction to queueing theory, 2nd ed., Mathematical Modeling, vol. 5, Birkhauser, Boston, 1989.
2. S. Karlin, A rst course in stochastic processes, Academic Press, New York-London, 1966.
3. V. V. Anisimov, O. K. Zakusylo, V. S. Donchenko, Elements of the queueing theory and asymptotic analysis of systems, Vyshcha shkola, Kiev, 1987. (Russian)
4. J.W. Cohen, Extreme values distribution for the M/G/1 and G/M/1 queueing systems, Ann.Inst. H. Poincare., Sect.B, 4 (1968), 83-98.
5. C.W. Anderson, Extreme value theory for a class of discrete distribution with application to some stochastic processes, J. Appl. Prob., 7 (1970), 99-113.
6. D. L. Iglehart, Extreme values in the GI/G/1 gueue, Ann. Math. Statist., 43 (1972), 627-635.
7. R. F. Serfozo, Extreme values of birdh and death processes and queues, Stochastic Process. Appl., 27 (1988), 291-306.
8. S. Asmussen, Extreme values theory for queues via cycle maxima, Extremes, 1 (1998), 137-168.
9. J. Galambos, The asymptotic theory of extreme order statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1978.
10. M. R. Leadbetter, G. Lindgren, H. Rootzen, Extremes and related properties of random sequences and processes, Springer Series in Statistics, Springer-Verlag, New York-Berlin, 1983.
11. D. Cox, W. Smith, Renewal theory, Sovetskoye Radio, Moscow, 1967. (Russian)
12. I. I. Gikhman, A. V. Skorokhod, M. I. Yadrenko, Theory of probability and mathematical statistics, Vyshcha shkola, Kiev, 1988. (Russian)
13. I. K. Matsak, A lemma for random sums and its applications, Ukrain. Mat. Zh. (2017), in press. (Ukrainian)
14. E. Yu. Barzilovich, Yu. K. Belyaev, V. A. Kashtanov, I. N. Kovalenko, A. D. Solovyev, I. A. Ushakov, Problems of the mathematical theory of reliability (B. V. Gnedenko, ed.), Radio i Svyaz,Moscow, 1983. (Russian)
15. B. V. Gnedenko, Yu. K. Belyayev, A. D. Solovyev, Mathematical methods of reliability theory, Academic Press, New York-London, 1969.
16. W. Feller, An introduction to probability theory and its applications, vol. 2, 2nd ed., John Wiley & Sons, New York-London-Sydney, 1971.
17. B. V. Dovga, I. K. Matsak, On a redundant system with renewals, Theory Probab. Math. Statist., 94 (2017), 63-76.
18. S. Karlin, J. McGregor, The classication of birth and death processes, Trans. Amer. Math. Soc., 86 (1957), 366-400.
19. L. Takacs, Some probability questions in the theory of telephone trac, Magyar Tud. Akad. Mat. Fiz. Oszt. Kozl., 8 (1958), 151-210. (Hungarian)