A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Consistency of the least squares estimator of the textured surface sinusoidal model parameters

A. V. Ivanov, O. V. Maliar

Download PDF

Abstract: For sinusoidal observation model of textured surface, i. e. for model where regression function is a sum of two-parameter harmonic oscillations and noise is a homogeneous isotropic Gaussian random field on the plane, the strong consistency conditions of unknown amplitudes and angular frequencies least squares estimates of indicated trigonometric regression model are obtained.

Keywords: Sinusoidal model of textured surface, homogeneous isotropic random field, least squares estimates, consistency

Bibliography:
1. J. M. Francos, A. Z. Meiri, B. Porat, A united texture model based on 2-D Wald type decomposition, IEEE Trans. Signal Process., 41 (1993), 2665-2678.
2. T. Yuan, T. Subba Rao, Spectrum estimation for random elds with application to Markov modelling and texture classication, Markov Random Fields, Theory and Applications (R. Chellappa, A. K. Jain, eds.), Academic Press, New York, 19-93.
3. H. Zhang, V. Mandrekar, Estimation of hidden frequencies for 2D stationary processes, J. Time Series Anal., 22 (2001), 613-629.
4. S. Nandi, D. Kundu, R. K. Srivastava, Noise space decomposition method for two-dimensional sinusoidal model, Comput. Statist. Data Anal., 58 (2013), 147-161.
5. P. Malliavan, Sur la norte d'une matrice circulante Gaussienne, Comptes Rendus de l'Academie des Sciences, Serie 1 (Mathematique) (1994), 45-49.
6. P. Malliavin, Estimation d'un signal Lorentzien, C. R. Acad. Sci. Paris Ser. I Math., 319 (1994), no. 9, 991-997.
7. M. I. Yadrenko, Spectral theory of random elds, Optimization Software, New York, 1983.
8. A. V. Ivanov, N. N. Leonenko, Statistical analysis of random elds, Kluwer Academic Publishers, Dordecht-Boston-London, 1989.
9. A. V. Ivanov, Consistency of the least squares estimator of the amplitudes and angular frequencies of a sum of harmonic oscillations in models with long-range dependence, Theory Probab. Math. Statist., 80 (2010), 61-69.
10. A. V. Ivanov, N. N. Leonenko, M. D. Ruiz-Medina, B. M. Zhurakovsky, Estimation of harmonic component in regression with cyclically dependent errors, Statistics, 49 (2015), 156-186.
11. C. R. Rao, L. C. Zhao, B. Zhou, Maximum likelihood estimation of 2-D superimposed exponential, IEEE Trans. Signal Process., 42 (1994), 795802.
12. D. Kundu, A. Mitra, Asymptotic properties of the least squares estimates of 2-D exponential signals, Multidimens. Syst. Signal Process., 7 (1996), 135-150.
13. D. Kundu, S. Nandi, Determination of Discrete Spectrum in a Random Field, Statistica Neerlandica 57 (2003), no. 2, 258-284.
14. D. R. Brillinger, Regression for randomly sampled spatial series: The trigonometric case, J. Appl. Probab., 23 (1986), 275-289.
15. A. V. Ivanov, Asymptotic theory of nonlinear regression, Kluwer Academic Publishers, Dor-decht-Boston-London, 1997.
16. A. M. Walker, On the estimation of a harmonic component in a time series with stationary dependent residuals, Adv. Appl. Probab. 5 (1973), 217-241.