Theory of Probability and Mathematical Statistics
Fractional Stokes-Boussinesq-Langevin equation and Mittag-Leffler correlation decay
V. V. Anh, N. N. Leonenko
Download PDF
Abstract: This paper presents some stationary processes which are solutions of the fractional Stokes-Boussinesq-Langevin equation. These processes have reflection positivity and their correlation functions, which may exhibit the Alder-Wainwright effect or long-range dependence, are expressed in terms of the Mittag-Leffler functions. These properties are established rigorously via the theory of KMO-Langevin equation and a combination of Mittag-Leffler functions and fractional derivatives. A~relationship to fractional Riesz-Bessel motion is also investigated. This relationship permits to study the effects of long-range dependence and second-order intermittency simultaneously.
Keywords: Anomalous diffusion, Stokes-Boussinesq-Langevin equation, Langevin equation with delay, long-range dependence, Mittag-Leffler function.
Bibliography: 1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1972.
2. B. J. Alder and T. E. Wainwright, Velocity autocorrelations for hard spheres, Phys. Rev. Lett., 18 (1967), 988-990.
3. B. J. Alder and T. E. Wainwright Decay of the velocity autocorrelation function, Phys. Rev. A, 1 (1970), 18-21.
4. E. Alos, O. Mazet, and D. Nualart, VStochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2, Stochastic Process. Appl., 86 (2000), 121-139.
5. V. V. Anh, J. M. Angulo, and M. D. Ruiz-Medina,Possible long-range dependence in fractional random fields, J. Statist. Plann. Inference, 80 (1999), no. 1/2, 95-110.
6. V. V. Anh, C. C. Heyde, and Q. Tieng, Stochastic models for fractal processes, J. Statist. Plann. Inference, 80 (1999), no. 1/2, 123-135.
7. V. V. Anh, N. N. Leonenko, and R. McVinish, Models for fractional Riesz-Bessel motion and related processes, Fractals, 9 ( 2001), no. 3, 329-346.
8. L. Bachelier, Theorie de la speculation, Annales de l'Ecole Normale Superieure, 17 (1900), 21-86.
9. E. Barkai and R. J. Silbey, Fractional Kramers equation, J. Phys. Chem. B, 104 (2000), 3866-3874.
10. A. B. Basset, A Treatise on Hydrodynamics, Deighton Bell, Cambridge, 2 (1888).
11. J. Boussinesq, Sur la resistence qu'oppose un liquid indeni en repos, san pesanteur, au mouvement varie d'une sphere solide qu'il mouille sur toute sa surface, quand les faibles pour que leurs carres et produits soient negligeables, C. R. Acad. Paris, 100 (1885), 935-937.
12. R. F. Camargo, E. C. de Oliveira and J. Vaz Jr. On anomalous diusion and the fractional generalized Langevin equation for a harmonic oscillator, J. Math. Phys., 50 (2009), 123518.
13. M. Caputo, Elasticita e Dissipazione, Zanichelli, Bologna, 1969.
14. M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento, (ser. II), 1 (1971), 161-198.
15. P. Cheridito, H. Kawaguchi and M. Maejima, Fractional Ornstein-Uhlenbeck process, Electronic J. Probab., 8 (2003), 1-14.
16. F. Comte and E. Renault, Long memory continuous-time models, J. Econometrics, 73 (1996), 101-149.
17. M. M. Djrbashian, Harmonic Analysis and Boundary Value Problems in the Complex Domain, Operator Theory Advances and Applications, Birkhauser Verlag, Basel, 65 (1993).
18. M. M. Djrbashian and A. B. Nersesian, Fractional derivatives and the Cauchy problem for differential equations of fractional order, Izv. Acad. Nauk Armjanskoy SSR, 3 (1968), no. 1, 3-29. (Russian)
19. W. J. Donoghue. Distributions and Fourier Transforms, Academic Press, New York, 1969.
20. J. W. Dufty, Gaussian model for
uctuation of a Brownian particle, Phys. Fluids, 17 (1974),328-333.
21. H. Dym and H.P. McKean, Gaussian Processes, Function Theory and the Inverse Spectral Problem, Academic Press, 1976.
22. A. Einstein, Uber die von der molekularkinetichen Teorie der Warge geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen, Drudes Ann., 17 (1905), 549-560.
23. C. H. Eab and S. C. Lim, Fractional generalized Langevin equation approach to single-file diffusion, Physica A, 389 (2010), 2510-2521.
24. M. B. Erdogan and I. V. Ostrovski, Analytic and asymptotic properties of generalized Linnik probability densities, J. Math. Anal. Appl., 217 (1998), 555-578.
25. K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E, 061104 (2006), 1-4.
26. W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, II (1971).
27. U. Frisch, Turbulence, Cambridge University Press, 1995.
28. J. Glimm and A. Jaffe. Quantum Physics, Springer-Verlag, 1987.
29. E. H. Hauge and A. Martin-Lof, Fluctuating hydrodynamics and Brownian motion, J. Stat. Physics, 7 (1973), no. 3, 259-281.
30. G. C. Hegerfeldt, From Euclidean to relativistic fields and on the notion of Markov fields, Comm. Math. Phys., 35 (1974), 155-171.
31. T. Hida and L. Streit, On Quantum theory in terms of white noise, Nagoya Math. J., 68 (1977),21-34.
32. E. Igloi and G. Terdik, Bilinear stochastic systems with fractional Brownian motion input, Ann. Appl. Probab., 9 (1999), no. 1, 46-77.
33. A. Inoue, On the equations of stationary processes with divergent diffusion coeffcients, J. Fac. Sci. Univ. Tokyo, Sect. IA, 40 (1993), 307-336.
34. A. Inoue and Y. Kasahara, On the asymptotic behaviour of the prediction error of a stationaryprocess, N. Kono and N.-R. Shieh (Eds.), Trends in Probability and Related Analysis, World Scientific, 207-218, 1999.
35. S. C. Kou and X. S. Xie, Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule, Phys. Rev. Lett., 93 (2004), 180-603.
36. R. Kubo, The fuctuation-dissipation theorem, Report on Progress in Physics, 29 (1966), 255-284, Part I.
37. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Springer-Verlag, Berlin, 1978.
38. P. Langevin, Sur la theorie du mouvement brownien, C. R. Acad. Sci. Paris, 146 (1908), 530-533/
39. S. C. Lim and L.P. Teo, Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation, J. Stat. Mech., P08015 (2009).
40. E. Lutz, Fractional Langevin equation, Phys. Rev. E, 64 (2001), 051106.
41. F. Mainardi and P. Pironi, The fractional Langevin equation: the Brownian motion revisited, Extracta Mathematicae, 11 (1996), 140-154.
42. M. R. Maxey and J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, 26 (1983), 883-889.
43. R. Metzler and J. Klafter, From a generalized Chapman-Kolmogorov equation to the fractional Klein-Kramers equation, J. Phys. Chem. B, 104 (2000), 3851-3857.
44. R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Plank equation approach, Phys. Rev. Lett., 82 (1999), 3563-3567.
45. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
46. W. Min, G. Luo, B. J. Cherayil, S. C. Kou and X. S. Xie, Observation of a power-law memory kernel for fuctuations within a single protein molecule, Phys. Rev. Lett., 94 (2005), 198302.
47. Yu. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer-Verlag, Berlin, 2008.
48. E. Nelsen. Dynamic Theories of Brownian motion, Princeton University Press, Princeton, 1967.
49. E. Nelsen, Construction of quantum fields from Markov fields, Functional Anal., 12 (1973), 97-112.
50. Y. Okabe, On a stationary Gaussian process with T-positivity and its associated Langevin equation and S-martix, J. Fac. Sci. Univ. Tokyo, Sect IA, 26 (1979), 115-165.
51. Y. Okabe, On a stochastic differential equation for a stationary Gaussian process with Tpositivity and the fluctuation-dissipation theorem, J. Fac. Sci. Univ. Tokyo, Sect IA, 28 (1981), 169-213.
52. Y. Okabe, On the theory of the Brownian motion with the Alder-Wainwright effect, J. Stat.Phys., 45 (1986), no. 4/5, 953-981.
53. K. Ostervalder and R. Schrader, Axioms for Euclidean Green's functions, Comm. Math. Phys., 31 (1973), 83-112.
54. V. Pipiras and M. S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Related Fields, 118 (2000), 251-291.
55. I. Podlubny. Fractional Differential Equations, Academic Press, San Diego, 1999.
56. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, 1993.
57. G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes, Chapman and Hall, New York, 1994.
58. T. Sandev, Z. Tomovski and J. Dubbeldam, Generalized Langevin equation with a three parameter Mittag-Leffler noise, Physica A, 390 (2011), 3627-3636.
59. T. Sandev, R. Metzler and Z. Tomovski, Velocity and displacement correlation functions for fractional generalized Langevin equation, Fract. Calc. Appl. Anal., 15 (2012), 426-450.
60. A. N. Shiryaev, Essentials of Stochastic Finance: Facts, Models, Theory, Advanced Series on Statistical Science & Applied Probability, 3 (1999), World Scientific, Singapore.
61. M. R. V. Smoluchowski, Zur kinetshen Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. Phys., 21 (1906), 756-780.
62. G. G. Stokes, Mathematical and Physical Papers, Volume 3, 1966. Reprinted from Trans. Camb. Phil. Soc., 9 (1850).
63. G. E. Uhlenbeck and L. S. Ornstein, On the theory of Brownian motion, Physical Review, 36 (1930), 823-841.
64. A. Widom, Velocity
uctuation of a hard-core Brownian particle, Phys. Rev. A, 3 (1971), 1394-1396.
65. N. Wiener, Generalized harmonic analysis, Acta Math., 55 (1930), 117-258.
66. E. Wong and B. Hajek, Stochastic Processes in Engineering Systems, Springer-Verlag, New York, 1971.