A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Equation for vibrations of a string with fixed ends, forced by a stable random noise

L. I. Rusaniuk, G. M. Shevchenko

Download PDF

Abstract: We study the equation for forced vibrations of a homogeneous string with a random force having a symmetric α-stable distribution. We show that the function constructed by the Fourier method is a generalized solution to the equation, and establish its pathwise regularity.

Keywords: Equation for vibrations of a string, wave equation, Fourier method, generalized solution, stable measure with independent increments, LePage series.

Bibliography:
1. I. M. Bodnarchuk, Wave equation with a stochastic measure, Theory Probab. Math. Statist., 94 (2016), 1-15.
2. R. Carmona, D. Nualart, Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Related Fields, 79 (1988), no. 4, 469-508.
3. E. Cabana, The vibrating string forced by white noise, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 15 (1970), 111-130.
4. R. C. Dalang, N. E. Frangos, The stochastic wave equation in two spatial dimensions, Ann. Probab., 26 (1998), no. 1, 187-212.
5. R. C. Dalang, M. Sanz-Sole, Holder-Sobolev regularity of the solution to the stochastic wave equation in dimension three, Mem. Amer. Math. Soc., 199(931), AMS, Providence, 2009.
6. D. M. Gorodnya, On the existence and uniqueness of solutions of the Cauchy problem for wave equations with general stochastic measures, Theory Probab. Math. Statist., 85 (2012), 53-59.
7. N. Kono, M. Maejima, Holder continuity of sample paths of some self-similar stable processes, Tokyo J. Math., 14 (1991), no. 1, 93-100.
8. D. Khoshnevisan, E. Nualart, Level sets of the stochastic wave equation driven by a symmetric Levy noise, Bernoulli, 14 (2008), no. 4, 899-925.
9. M. A. Lifshits, Gaussian random functions, Kluwer Academic Publishers, Dordrecht, 1995.
10. S. V. Lototsky, B. L. Rozovsky, Stochastic partial differential equations, Universitext, Springer, Cham, 2017.
11. A. Millet, P.-L. Morien, On a stochastic wave equation in two space dimensions: regularity of the solution and its density, Stochastic Processes Appl., 86 (2000), no. 1, 141-162.
12. B. Oksendal, F. Proske, M. Signahl, The Cauchy problem for the wave equation with Levy noise initial data, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9 (2006), no. 2, 249-270.
13. E. Orsingher, Randomly forced vibrations of a string, Ann. Inst. H. Poincare Sect. B (N.S.), 18 (1982), no. 4, 367-394.
14. L. Pryhara, G. Shevchenko, Stochastic wave equation in a plane driven by spatial stable noise, Mod. Stoch. Theory Appl., 3 (2016), no. 3, 237-248.
15. L. Pryhara, G. Shevchenko, Wave equation with a stable noise, Theory Probab. Math. Statist., 96 2017, 143-155.
16. L. Pryhara, G. Shevchenko, Wave equation with a coloured stable noise, Random Oper. Stoch. Equ., 25 (2017), no. 4, 249-260.
17. L. Quer-Sardanyons, S. Tindel, The 1-d stochastic wave equation driven by a fractional Brownian sheet, Stochastic Processes Appl., 177 (2007), no. 10, 1448-1472.
18. G. Samorodnitsky, M. S. Taqqu, Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance, Chapman & Hall, New York, 1994.
19. J. B.Walsh, An introduction to stochastic partial differential equations, Ecole D'ete de Probabilites de Saint-Flour, XIV-1984, Lecture Notes in Math., Springer, Berlin, 1986, 265-439.