Theory of Probability and Mathematical Statistics
Limit behavior of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index
M. Slaoui, C. A. Tudor
Download PDF
Abstract: We study the convergence in distribution, as H→1/2 and as H→1, of the integral $\int_{\mathbb{R}} f(u) dZ^{H}(u) $, where $Z ^{H}$ is a Rosenblatt process with self-similarity index H∈(1/2,1) and f is a suitable deterministic function. We focus our analysis on the case of the Rosenblatt Ornstein-Uhlenbeck process, which is the solution of the Langevin equation driven by the Rosenblatt process.
Keywords: Wiener chaos, Rosenblatt process, cumulants, Hurst parameter.
Bibliography: 1. H. Araya, C. A. Tudor, Behavior of the Hermite sheet with respect to the Hurst index, Preprint, (2017).
2. S. Bai, M. Taqqu, Behavior of the generalized Rosenblatt process at extremes critical exponent values , Ann. Probab., 45 (2017), no. 2, 1278-1324.
3. D. Bell, D. Nualart, Noncentral limit theorem for the generalized Rosenblatt process, Electron. Commun. Probab., 22 (2017), no. 66, 13.
4. P. Cheridito, H. Kawaguchi, M. Maejima, Fractional Ornstein{Uhlenbeck processes, Electron. J. Probab., 8 (2003), no. 3, 1-14.
5. R. Fox, M. S. Taqqu, Multiple stochastic integrals with dependent integrators. J. Multivariate Anal., 21, (1987), 105-127.
6. M. Maejima, C. A. Tudor, Wiener integrals with respect to the Hermite process and a Non-Central Limit Theorem. Stoch. Anal. Appl., 25 (2007), no. 5, 1043-1056.
7. I. Nourdin, Selected Aspects of the Fractional Brownian Motion, Springer-Bocconi, 2012.
8. I. Nourdin, G. Peccati, Normal Approximations with Malliavin Calculus From Stein 's Method to Universality, Cambridge University Press, 2012.
9. D. Nualart, G. Peccati, Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab., 33, (2005), 177-193.
10. V. Pipiras, M. Taqqu, Long -range dependence and self-similarity. Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press. 2017.
11. Y. V. Prokhorov, Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl., 1 (1956), no. 2, 157-214.
12. M. Slaoui, C. A. Tudor, On the linear stochastic heat equation with Hermite noise. Preprint, (2017).
13. N. Terrin, M. S. Taqqu, Power counting theorem in Euclidean space. Random walks, Brownian motion, and interacting particle systems, Progress in Probability, vol 28. Birkhauser, Boston, MA, 1991, 425-440.
14. C. A. Tudor, Analysis of variations for self-similar processes. A stochastic calculus approach, Probability and its Applications, Springer, Cham, New York, 2013.
15. M. S. Veillette, M. S. Taqqu, Properties and numerical evalution of the Rosenblatt process.Bernoulli, 19 (2013), no. 3, 982-1005.
16. D. Nualart, Malliavin Calculus and Related Topics, 2nd ed., Springer, 2006.