Theory of Probability and Mathematical Statistics
Transfer Principle for MakeLowercase n-th order Fractional Brownian Motion with Applications to Prediction and Equivalence in Law
T. Sottinen, L. Viitasaari
Download PDF
Abstract: The n-th order fractional Brownian motion was introduced by Perrin et al. [13]. It is the (up to a multiplicative constant) unique self-similar Gaussian process with the Hurst index H∈(n-1,n), having n-th order stationary increments. We provide a transfer principle for the n-th order fractional Brownian motion, i. e., we construct a Brownian motion from the n-th order fractional Brownian motion and then represent the n-th order fractional Brownian motion by using the Brownian motion in a non-anticipative way so that the filtrations of the n-th order fractional Brownian motion and the associated Brownian motion coincide. By using this transfer principle, we provide the prediction formula for the n-th order fractional Brownian motion and also a representation formula for all Gaussian processes that are equivalent in law to the n-th order fractional Brownian motion.
Keywords: Fractional Brownian motion, stochastic analysis, transfer principle, prediction, equivalence in law.
Bibliography: 1. E. Alos, O. Mazet, D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab., 29 (2001), no. 2, 766-801.
2. F. Aurzada, Path regularity of Gaussian processes via small deviations, Probab. Math. Stat., 31 (2011), 61-78.
3. F. Aurzada, F. Gao, T. Kuhn, W. Li, Q.-M. Shao, Small deviations for a family of smooth Gaussian processes, J. Theor. Prob., 26 (2013), 153-168.
4. F. Aurzada, I. Ibragimov, M. Lifshits, J. van Zanten, Small deviations of smooth stationary Gaussian processes, Theory Probab. Appl., 53 (2009), 697-707.
5. P. Brockwell, R. Davis, Time series: Theory and methods, vol. 2, Springer, 1991.
6. M. Hitsuda, Representation of Gaussian processes equivalent to Wiener process, Osaka J. Math., 5 (1968), 299-312.
7. S. Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, Cambridge, 1997.
8. B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.
9. Y. S.Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics, vol. 1929, Springer-Verlag, Berlin, 2008.
10. G. M. Molchan, Historical comments related to fractional Brownian motion, Theory and applications of long-range dependence, Birkhauser Boston, Boston, MA, 2003, 39-42.
11. G. M. Molchan, J. I. Golosov, Gaussian stationary processes with asymptotically a power spectrum, Dokl. Akad. Nauk SSSR, 184 (1969), 546-549.
12. I. Norros, E. Valkeila, J. Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions, Bernoulli, 5 (1999), no. 4, 571-587.
13. E. Perrin, R. Harba, C. Berzin-Joseph, I. Iribarren, A. Bonami, nth-order fractional Brownian motion and fractional Gaussian noises, IEEE Transactions on Signal Processing, 49 (2001), no. 5, 1049-1059.
14. V. Pipiras, M. S. Taqqu, Are classes of deterministic integrands for fractional Brownian motion on an interval complete?, Bernoulli, 7 (2001), no. 6, 873-897.
15. F. Smithies, Integral equations, Cambridge Tracts in Mathematics, Cambridge University Press, 1958.
16. T. Sottinen, On Gaussian processes equivalent in law to fractional Brownian motion, J. Theoret. Probab., 17 (2004), no. 2, 309-325.
17. T. Sottinen, C. A. Tudor, On the equivalence of multiparameter Gaussian processes, J. Theoret. Probab., 19 (2006), no. 2, 461-485.
18. T. Sottinen, L. Viitasaari, Stochastic analysis of Gaussian processes via Fredholm representation, International Journal of Stochastic Analysis (2016), DOI:10.1155/2016/8694365.
19. T. Sottinen, L. Viitasaari, Prediction law of fractional Brownian motion, Stat. Probab. Lett., 129 (2017), 155-166.