A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Estimation of the remainder in asymptotic expansion of a functional of semi-Markov random evolution

V. S. Koroliuk, I. V. Samoilenko

Download PDF

Abstract: In [5] we found regular and singular parts of the expansion for a functional of semi-Markov random evolution and showed regularity of initial conditions. In this work we estimate the remainder of the asymptotic expansion found in [5].

Keywords: asymptotic expansion, semi-Markov process, random evolution, remainder.

Bibliography:
1. S. Albeverio, V. S. Koroliuk, I. V. Samoilenko, Asymptotic expansion of semi-Markov random evolutions, Stochastics, 81 (2009), no. 5, 343-356.
2. V. S. Korolyuk, V. V. Korolyuk, Stochastic Models of Systems, Kluwer Acad. Publ., 1999.
3. V. S. Korolyuk, N. Limnios, Stochastic Systems in Merging Phase Space,World Scientic Publishers, 2005.
4. V. S. Korolyuk, A. F. Turbin, Mathematical foundation of state lumping of large systems, Kluwer Acad. Publ., 1990.
5. V. S. Koroliuk, I. V. Samoilenko, Asymptotic expansion for a functional of semi-Markov random evolution in diffusion approximation scheme, Theory Probab. Math. Statist., 96 (2017), 84-99. (Ukrainian)
6. A. A. Pogorui, R. M. Rodriguez-Dagnino, Asymptotic expansion for transport processes in semi-Markov media, Theory Probab. Math. Statist., 83 (2011), 127-134.
7. I. V. Samoilenko, Asymptotic expansion for the functional of markovian evolution in Rd in the circuit of diffusion approximation, J. Appl. Math. Stoch. Anal., 3 (2005), 247-258.
8. I. V. Samoilenko, Asymptotic expansion of a semi-Markov random evolution, Ukr. Math. J., 58 (2006), no. 9, 1396-1414.
9. V. M. Shurenkov, Ergodic Markov processes, Nauka, Moscow, 1989. (Russian)
10. A. V. Swishchuk, Semi-Markov random evolutions: some ideas, methods and results, Exploring Stochastic Laws. Festschrift in Honour of the 70th Birthday of Academician V. S. Korolyuk (A. V. Skorokhod and Yu. V. Borovskikh, ed.), VSP, 1995, 417-442.
11. A. Swishchuk, Jianhong Wu, Evolution of Biological Systems in Random Media: Limit Theorems and Stability, Springer, 2003.
12. A. V. Swishchuk, Estimations of convergence rate in limi theorems for semi-Markov random evolutions, Stochastic systems and theor applications, Inst. of Math. NasUSSR, Kiev, 1990, 86-92. (Russian)
13. G. G. Yin, Q. Zhang, Continuous-Time Markov Chains and Applications: a Singular Perturbation Approach, Springer, 1998.