A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Order of approximation in the central limit theorem for associated random variables and a moderate deviation result

M. Sreehari

Download PDF

Abstract: An estimate of the order of approximation in the central limit theorem for strictly stationary associated random variables with finite moments of order q > 2 is obtained. A moderate deviation result is also obtained. We have a refinement of recent results in Cagin et al. [2]. The order of approximation obtained here is an improvement over the corresponding result in Wood [12].

Keywords: Associated random variables, central limit theorem, rate of convergence, Berry-Esseen type bound, moderate deviations.

Bibliography:
1. T. Birkel, On the convergence rate in the central limit theorem for associated processes, Ann. Probab, 16 (1988), 1689-1698.
2. T. Cagin, P. E. Oliveira, N. Torrado, A moderate deviation for associated randon variables, J. Korean Statist. Soc., 45 (2016), 285-294.
3. A. Dembo, A. Zeitouni, Large deviation techniques and applications, 2nd ed., Springer, New York, 1998.
4. A.N. Frolov, On probabilities of moderate deviations of sums for independent random variables, Jl. Math. Sci., 127 (2005), 1787-1796.
5. F. D. Hollander, Large deviations, Fields Inst. Monographs, Amer. Math. Soc., Providence, Rhodes Island, 2000.
6. M. Loeve, Probability Theory, I, 4th Edn., Springer, New York, 1977.
7. C. M. Newman, Normal
uctuations and FKG-inequality, Commun. Math. Phys., 74 (1980), 119-128.
8. P. E. Oliveira, Asymptotics for associated random variables, Heidelberg, Springer, 2012.
9. A.N. Tikhomirov, On the convergence rate in the central limit theorem for weakly dependent random variables, Theory Probab. Appl., 25 (1980), 790-809.
10. S. R. S. Varadhan, Large deviations and applications, S. I. A. M., Philadelphia, 1984.
11. W. Wang, Large deviations for sums of random vectors attracted to operator semi-stable laws, Jl. Theor. Probab. (2015).
12. T. E.Wood, A Berry-Esseen theorem for associated random variables, Ann. Probab., 11 (1983),1041-1047.