A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



On a new Sheffer class of polynomials related to normal product distribution

E. Azmoodeh, D. Gasbarra

Download PDF

Abstract: In this paper, using the Stein operator $\RR_\infty$ given in \cite{g-2normal}, associated with the normal product distribution living in the second Wiener chaos, we introduce a new class of polynomials \PP_\infty\coloneqq \left \{ P_n (x) = \RR^n_\infty \mathbf{1} \, : \, n \ge 1 \right \}. We analyze in details the polynomials class $\PP_\infty$, and relate it to Rota's Umbral calculus by showing that it is a Sheffer family and enjoys many interesting properties. Lastly, we study the connection between the polynomial class $\PP_\infty$ and the non-central probabilistic limit theorems within the second Wiener chaos.

Keywords: Second Wiener chaos, normal product distribution, cumulants/moments, weak convergence, Malliavin calculus, Sheffer polynomials, umbral calculus.

Bibliography:
1. M. Abramowitz, I. A. Stegun, eds., Modified Bessel Functions I and K, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed., Dover, New York, 972, 374-377.
2. B. Arras, E. Azmoodeh, G. Poly, Y. Swan, Stein characterizations for linear combinations of gamma random variables, 2017, https://arxiv.org/pdf/1709.01161.pdf.
3. B. Arras, E. Azmoodeh, G. Poly, Y. Swan, A bound on the 2-Wasserstein distance between linear combinations of independent random variables, 2017, to appear in Stochastic Process. Appl.
4. F. Avram, M. Taqqu, Noncentral Limit Theorems and Appell Polynomials, Ann. Probab., 15 (1987), no. 2, 767-775.
5. E. Azmoodeh, D. Gasbarra, New moments criteria for convergence towards normal product-tetilla laws, 2017, https://arxiv.org/abs/1708.07681.
6. E. Azmoodeh, D. Malicet, G. Mijoule, G. Poly, Generalization of the Nualart{Peccati criterion Ann. Probab., 44 (2016), no. 2, 924-954.
7. E. Azmoodeh, G. Peccati, G. Poly, Convergence towards linear combinations of chi-squared random variables: a Malliavin-based approach, Seminaire de Probabilites XLVII (Special volume in memory of Marc Yor), 2014, 339-367.
8. S. Bai, M. Taqqu, Behavior of the generalized Rosenblatt process at extreme critical exponent values, Ann. Probab. 45 (2017), no. 2, 1278-1324.
9. V. Bally, Introduction to Malliavin Calculus, 2007,http://perso-math.univ-mlv.fr/users/bally.vlad/Osaka100407.pdf.
10. J. Baldeaux, E. Platen, Functionals of multidimensional diffusions with applications to finance, Bocconi & Springer Series, vol. 5, Springer & Bocconi University Press, 2013.
11. A. Baricz, S. Ponnusamy, On Turan type inequalities for modied Bessel functions, Proc. Amer. Math. Soc., 141 (2013), no. 2, 523-532.
12. Y. Ben Cheikh, Some results on quasi-monomiality, Appl. Math. Comput., 141 (2003), no. 1,63-76.
13. Y. Ben Cheikh, K. Douak, On two-orthogonal polynomials related to the Bateman's $J^{u,v}_n$ -function, Methods Appl. Anal., 7 (2009), no. 4, 641-662.
14. T. S. Chihara, An Introduction to Orthogonal Polynomials, Dover Books on Mathematics, 2011.
15. L. Comtet, Advanced combinatorics. The art of finite and infinite expansions, D. Reidel Publishing Co., 1974.
16. A. Deya, I. Nourdin, Convergence of Wigner integrals to the tetilla law, ALEA Lat. Am. J. Probab. Math. Stat., 9 (2012), 101-127.
17. R. E. Gaunt, On Stein's method for products of normal random variables and zero bias couplings, Bernoulli, 23 (2017), no. 4B, 3311-3345.
18. R. E. Gaunt, Variance-Gamma approximation via Stein's method, Electron. J. Probab., 19 (2014), no. 38, 1-33.
19. P. Eichelsbacher, C. Thale, Malliavin{Stein method for Variance-gamma approximation on Wiener space, Electron. J. Probab., 20 (2015), no. 123, 1{28.
20. M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, 2009.
21. S. Gradshetyn, I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed., Academic Press, 2007.
22. P. Malliavin, Integration and probability, Graduate Texts in Mathematics, vol. 157, Springer-Verlag, New York, 1995.
23. I. Nourdin, G. Peccati, Normal Approximations Using Malliavin Calculus: from Stein's Method to Universality, Cambridge Tracts in Mathematics, vol. 192, Cambridge University Press, 2012.
24. I. Nourdin, G. Poly, Convergence in law in the second Wiener-Wigner chaos, Elect. Comm.in Probab., 17 (2012), no. 36, 12 pp.
25. D. Nualart, G. Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab., 330 (2005), no. 1, 177-193.
26. G. Peccati, M. S. Taqqu, Wiener chaos: moments, cumulants and diagrams, Bocconi & Springer Series, vol. 1, Springer, Milan, 2011.
27. S. Roman, The umbral calculus, Pure and Applied Mathematics, vol. 111, Academic Press, New York, 1984.
28. S. Roman, The theory of the umbral calculus, I. J. Math. Anal., 87 (1982), no. 1, 58-115.
29. S. Roman, G. Rota, The Umbral Calculus, Advances Math., 27 (1978), 95-188.
30. R. J. Serfling, Approximation theorems of mathematical statistics, John Wiley & Sons, 1980.
31. I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J., 5 (1939), 590-622.
32. M. D. Springer, W. E. Thompson, The distribution of products of Beta, Gamma and Gaussian random variables, SIAM J. Appl. Math., 18 (1970), 721-737.
33. W. Van Assche, S. B. Yakubovich, Multiple orthogonal polynomials associated with Macdonald functions, Integral Transforms Special Funct., 9 (2000), 229-244.