Theory of Probability and Mathematical Statistics
On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators
K. V. Buchak, L. M. Sakhno
Download PDF
Abstract: In the paper we present the governing equations for marginal distributions of Poisson and Skellam processes time-changed by inverse subordinators. The equations are given in terms of convolution-type derivatives.
Keywords: Poisson process, Skellam process, time-change, inverse subordinator, governing equation, convolution-type derivatives.
Bibliography: 1. G. Aletti, N. N. Leonenko, E. Merzbach, Fractional Poisson fields and martingales, J. Stat. Phys., 170 (2018), no. 4, 700-730.
2. M. S. Alrawashdeh, J. F. Kelly, M. M. Meerschaert, H.-P. Scheffler, Applications of inverse tempered stable subordinators, Comput. Math. Appl., 73 (2017), no. 6, 892-905.
3. O. E. Barndorff-Nielsen, D. Pollard, N. Shephard, Integer-valued Levy processes and low latency financial econometrics, Quant. Finance, 12 (2011), no. 4, 587-605.
4. L. Beghin, E. Orsingher, Fractional Poisson processes and related planar random motions,Electron J. Probab., 14 (2009), no. 61, 1790-1827.
5. L. Beghin, E. Orsingher, Poisson-type processes governed by fractional and higher-order recursive differential equations, Electron J. Probab., 15 (2010), no. 22, 684-709.
6. J. Bertoin, Levy Processes, Cambridge University Press, Cambridge, 1996.
7. K. Buchak, L. Sakhno, Compositions of Poisson and Gamma processes, Mod. Stoch. Theory Appl. , 4 (2017), no. 2, 161-188.
8. R. Garra, E. Orsingher, M. Scavino, Some probabilistic properties of fractional point processes, Stoch. Anal. Appl., 35 (2017), no. 4, 701-718.
9. A. Kerss, N. Leonenko, A. Sikorskii, Fractional Skellam processes with applications to finance, Fract. Calc. Appl. Anal., 17 (2014), no. 2, 532-551.
10. K. Kobylych and L. Sakhno, Point processes subordinated to compound Poisson processes,Theory Probab. Math. Statist., 94 (2017), 89-96.
11. A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes, Integral Equations Operator Theory, 71 (2011), no. 4, 583-600.
12. A. Kumar, E. Nane, P. Vellaisamy, Time-Changed Poisson Processes, Statist. Probab. Lett., 81 (2011), 1899-1910.
13. N. Leonenko, E. Scalas, M. Trinh, The fractional non-homogeneous Poisson process. Statist. Probab. Lett., 120 (2017), 147-156.
14. M. M. Meerschaert, H.-P. Scheer, Triangular array limits for continuous time random wakrs,Stoch. Proc. Appl., 118 (2008), 1606-1633; 120 (2010), 2520-2521.
15. M. M. Meerschaert, E. Nane, P. Vellaisamy, The fractional Poisson process and the inverse stable subordinator, Electron. J. Probab., 16 (2011), Paper no. 59, 1600-1620.
16. E. Orsingher, F. Polito, The space-fractional Poisson process, Statist. Probab. Lett., 82 (2012), 852-858.
17. E. Orsingher, B. Toaldo, Counting processes with Bernstein intertimes and random jumps, J. Appl. Probab., 52 (2015), 1028-1044.
18. K. Sato, Levy processes and infinitely divisible distributions, Cambridge University Press, 1999.
19. J. G. Skellam, The frequency distribution of the difference between two Poisson variables belonging to different populations, J. R. Stat. Soc. Ser. A (1946), 109-296.
20. B. Toaldo, Convolution-type derivatives, hitting-times of subordinators and time-changed C0-semigroups, Potential Anal., 42 (2015), 115-140.