A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators

K. V. Buchak, L. M. Sakhno

Download PDF

Abstract: In the paper we present the governing equations for marginal distributions of Poisson and Skellam processes time-changed by inverse subordinators. The equations are given in terms of convolution-type derivatives.

Keywords: Poisson process, Skellam process, time-change, inverse subordinator, governing equation, convolution-type derivatives.

Bibliography:
1. G. Aletti, N. N. Leonenko, E. Merzbach, Fractional Poisson fields and martingales, J. Stat. Phys., 170 (2018), no. 4, 700-730.
2. M. S. Alrawashdeh, J. F. Kelly, M. M. Meerschaert, H.-P. Scheffler, Applications of inverse tempered stable subordinators, Comput. Math. Appl., 73 (2017), no. 6, 892-905.
3. O. E. Barndorff-Nielsen, D. Pollard, N. Shephard, Integer-valued Levy processes and low latency financial econometrics, Quant. Finance, 12 (2011), no. 4, 587-605.
4. L. Beghin, E. Orsingher, Fractional Poisson processes and related planar random motions,Electron J. Probab., 14 (2009), no. 61, 1790-1827.
5. L. Beghin, E. Orsingher, Poisson-type processes governed by fractional and higher-order recursive differential equations, Electron J. Probab., 15 (2010), no. 22, 684-709.
6. J. Bertoin, Levy Processes, Cambridge University Press, Cambridge, 1996.
7. K. Buchak, L. Sakhno, Compositions of Poisson and Gamma processes, Mod. Stoch. Theory Appl. , 4 (2017), no. 2, 161-188.
8. R. Garra, E. Orsingher, M. Scavino, Some probabilistic properties of fractional point processes, Stoch. Anal. Appl., 35 (2017), no. 4, 701-718.
9. A. Kerss, N. Leonenko, A. Sikorskii, Fractional Skellam processes with applications to finance, Fract. Calc. Appl. Anal., 17 (2014), no. 2, 532-551.
10. K. Kobylych and L. Sakhno, Point processes subordinated to compound Poisson processes,Theory Probab. Math. Statist., 94 (2017), 89-96.
11. A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes, Integral Equations Operator Theory, 71 (2011), no. 4, 583-600.
12. A. Kumar, E. Nane, P. Vellaisamy, Time-Changed Poisson Processes, Statist. Probab. Lett., 81 (2011), 1899-1910.
13. N. Leonenko, E. Scalas, M. Trinh, The fractional non-homogeneous Poisson process. Statist. Probab. Lett., 120 (2017), 147-156.
14. M. M. Meerschaert, H.-P. Scheer, Triangular array limits for continuous time random wakrs,Stoch. Proc. Appl., 118 (2008), 1606-1633; 120 (2010), 2520-2521.
15. M. M. Meerschaert, E. Nane, P. Vellaisamy, The fractional Poisson process and the inverse stable subordinator, Electron. J. Probab., 16 (2011), Paper no. 59, 1600-1620.
16. E. Orsingher, F. Polito, The space-fractional Poisson process, Statist. Probab. Lett., 82 (2012), 852-858.
17. E. Orsingher, B. Toaldo, Counting processes with Bernstein intertimes and random jumps, J. Appl. Probab., 52 (2015), 1028-1044.
18. K. Sato, Levy processes and infinitely divisible distributions, Cambridge University Press, 1999.
19. J. G. Skellam, The frequency distribution of the difference between two Poisson variables belonging to different populations, J. R. Stat. Soc. Ser. A (1946), 109-296.
20. B. Toaldo, Convolution-type derivatives, hitting-times of subordinators and time-changed C0-semigroups, Potential Anal., 42 (2015), 115-140.