A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



The Mittag-Leffler function in the thinning theory for renewal processes

R. Gorenflo, F. Mainardi

Download PDF

Abstract: The main purpose of this note is to point out the relevance of the Mittag-Leffler probability distribution in the so-called thinning theory for a renewal process with a queue of power law type. This theory, formerly considered by Gnedenko and Kovalenko in 1968 without the explicit reference to the Mittag-Leffler function, was used by the authors in the theory of continuous time random walk and consequently of fractional diffusion in a plenary lecture by the late Professor Gorenflo at a Seminar on Anomalous Transport held in Bad-Honnef in July 2006, published in a 2008 book. After recalling the basic theory of renewal processes including the standard and the fractional Poisson processes, here we have revised the original approach by Gnedenko and Kovalenko for convenience of the experts of stochastic processes who are not aware of the relevance of the Mittag-Leffler functions.

Keywords: Mittag-Leffler functions, thinning (rarefaction), renewal processes, queuing theory, Poisson process.

Bibliography:
1. L. Beghin, E. Orsingher, Iterated elastic Brownian motions and fractional diffusion equations, Stochastic Process. Appl., 119 (2009), 1975-2003.
2. F. Beichelt, Stochastic Processes in Science, Engineering and Finance, Chapman & Hall/CRC',Boca Raton, US, 2006.
3. M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II, Geophys. J. R. Astr. Soc., 13 (1967), 529-539.
4. M. Caputo, Elasticita e Dissipazione, Bologna, Zanichelli, 1969.
5. M. Caputo, F. Mainardi, Linear models of in anelastic solids, Riv. Nuovo Cimento (Ser. II), 1 (1971), 161-198.
6. D. R. Cox, Renewal Theory, 2nd ed., Methuen, London, 1967.
7. L. Devroye, A note on Linnik's distribution, Statist. Probab. Lett., 9 (1990), 305-306.
8. A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, Bateman Project, McGraw-Hill, New York, 1955, vol 3. [Ch. 18: Miscellaneous Functions, 206-227.
9. W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, 2nd ed., Wiley,New York (1971).
10. I. M. Gel'fand, G. E. Shilov, Generalized Functions, vol. 1, Academic Press, New York, 1964.
11. B. V. Gnedenko, I. N. Kovalenko, Introduction to Queueing Theory, Israel Program for Scientific Translations', Jerusalem (1968).
12. R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffer Functions, Related topics and Applications, Spinger, Berlin, 2014.
13. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in: A. Carpinteri and F. Mainardi (eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien, 1997, 223-276.
14. R. Gorenflo, F. Mainardi, Anomalous Transport: Foundations and Applications, Ch 4: Continuous time random walk, Mittag-Leffer waiting time and fractional diffusion: mathematical aspects, (R. Klages, G. Radons, I.M. Sololov, eds.), Wiley-VCH, Weinheim, Germany, 2008, 93-127.
15. R. Goren
o, F. Mainardi, Parametric Subordination in Fractional Diffusion Processes, J. Klafter, S. C. Lim and R. Metzler (eds.), Fractional Dynamics, World Scientific, Singapore, 2012, Chapter 10, 229-263.
16. A.Ya. Khintchine, Mathematical Methods in the Theory of Queueing, Charles Griffn, London, 1960.
17. N. Laskin, Fractional Poisson processes, Comm. Nonlinear Sci. Num. Sim., 8 (2003), 201-213.
18. F. Mainardi, R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial survey, Fract. Calc. Appl. Anal., 10 (2007), 269-308.
19. F. Mainardi, R. Gorenflo, E. Scalas, A fractional generalization of the Poisson processes, Vietnam J. Math., 32 SI (2004), 53-64.
20. K. V. Mitov, E. Omey, Renewal Processes, Springer, Heidelberg, 2014.
21. R. N. Pillai, On Mittag-Leffer functions and related distributions, Ann. Inst. Statist. Math., 42, no. 1 (1990), 157-161.
22. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
23. A. Renyi, A characteristic of the Poisson stream, Proc. Math. Inst. Hungarica Acad. Sci., 1 (1956), no. 4, 563-570. (In Hungarian)
24. S. M. Ross, Introduction to Probability Models, 6th ed., Academic Press, New York, 1997.
25. T. Szantai, Limiting distribution for the sums of random number of random variables concerning the rarefaction of recurrent events, Studia Sci. Math. Hungar., 6 (1971), 443-452.
26. T. Szantai, On an invariance problem related to different rarefactions of recurrent event, Studia Sci. Math. Hungar., 6, (1971), 453-456.
27. D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.