A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Schrodinger equation with Gaussian potential

Y. Hu

Download PDF

Abstract: This paper studies the Schrodinger equation with fractional Gaussian noise potential of the form $\Delta u(x)= u(x)\diamond \dot W(x)$, $x\in \DDD$, $u(x)= \phi(x)$, $x\in \partial \DDD$, where $\Delta$ is the Laplacian on the $d$-dimensional Euclidean space $\RR^d$, $\DDD\subseteq \RR^d$ is a given domain with smooth boundary $\partial \DDD$, $\phi$ is a given nice function on the boundary $\partial \DDD$, and $\dot W$ is the fractional Gaussian noise of Hurst parameters $(H_1, \ldots, H_d)$ and $\diamond $ denotes the Wick product. We find a family of distribution spaces $(\WW_\la\,, \la>0)$, with the property $\WW_{\la}\subseteq \WW_\mu$ when $\la\le \mu$, such that under the condition $\sum_{i=1}^d H_i>d-2$, the solution exists uniquely in $\WW_{\la_0} $ when $\la_0$ is sufficiently big and the solution is not in $\WW_{\la_1}$ when $\la_1$ is sufficiently small.

Keywords: Fractional Brownian field, fractional Gaussian noise, Schrodinger equation, distribution spaces, chaos expansion, Poisson equation, multiplicative noise.

Bibliography:
1. F. Biagini, Y. Hu, B. Oksendal, T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Probab. Appl. (N. Y.), Springer-Verlag, London, 2008.
2. K. L. Chung, Z. X. Zhao, From Brownian motion to Schrodinger's equation, Grundlehren Math. Wiss., vol. 312, Springer-Verlag, Berlin, 1995.
3. D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
4. Q. Han, F. Lin, Elliptic partial differential equations, 2nd ed., Courant Lect. Notes Math.,vol. 1, Amer. Math. Soc., Providence, RI, 2011.
5. T. Hida, H.-H. Kuo, J. Potthoff, L. Streit, White noise. An infinite dimensional calculus,Mathematics and Its Applications, vol. 253, Kluwer Academic Publishers Group, Dordrecht, 1993.
6. Y. Hu, Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Amer. Math. Soc., 175 (2005), no. 825.
7. Y. Hu, Analysis on Gaussian space, World Scientific, Singapore, 2017.
8. Y. Hu, J. Huang, D. Nualart, S. Tindel, Stochastic heat equations with general multiplicative Gaussian noises: Holder continuity and intermittency, Electron. J. Probab., 20 (2015), no. 55.
9. Y. Hu, J. Huang, K. Le, D. Nualart, S. Tindel, Stochastic heat equation with rough dependence in space, to appear in Ann. Probab.
10. Y. Hu, D. Nualart, Stochastic heat equation driven by fractional noise and local time, Prob.Theory Related Fields, 143 (2009), 285{328.
11. Y. Hu, B. Oksendal, T. Zhang, Stochastic partial differential equations driven by multiparameter fractional white noise, Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999), CMS Conf. Proc., vol. 29, Amer. Math. Soc., Providence, RI, 2000, 327-337.
12. Y. Hu, B. Oksendal, T. Zhang, General fractional multiparameter white noise theory and stochastic partial differential equations, Comm. Partial Differential Equations, 29 (2004), 1-23.
13. Y. Hu, J. A. Yan, Wick calculus for nonlinear Gaussian functionals, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), no. 3, 399-414.
14. Yu. G. Kondratiev, Spaces of entire functions of an infinite number of variables, connected with the rigging of a Fock space, Spectral Analysis of Differential Operators, Selecta Mathematica Sovietica, 10 (1991), no. 2, 165-180.
15. Yu. G. Kondratiev, Nuclear spaces of entire functions in problems of infinite-dimensional analysis,Soviet Math. Dokl., 22 (1980), 588-592.
16. J. Memin, Y. Mishura, E. Valkeila, Inequalities for the moments of Wiener integrals with respectto a fractional Brownian motion, Statist. Probab. Lett., 51 (2001), 197-206.
17. Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Math., vol. 1929, Springer-Verlag, Berlin, 2008.
18. D. Nualart, The Malliavin calculus and related topics, 2nd ed., Probab. Appl. (N. Y.), Springer-Verlag, Berlin, 2006.
19. M. Sanz-Sole, I. Torrecilla, A fractional Poisson equation: existence, regularity and approximations of the solution, Stoch. Dyn., 9 (2009), no. 4, 519-548.
20. L. Quer-Sardanyons, S. Tindel, Pathwise definition of second-order SDEs, Stochastic Process. Appl., 122 (2012), no. 2, 466-497.