Theory of Probability and Mathematical Statistics
Schrodinger equation with Gaussian potential
Y. Hu
Download PDF
Abstract: This paper studies the Schrodinger equation with fractional Gaussian noise potential of the form $\Delta u(x)= u(x)\diamond \dot W(x)$, $x\in \DDD$, $u(x)= \phi(x)$, $x\in \partial \DDD$, where $\Delta$ is the Laplacian on the $d$-dimensional Euclidean space $\RR^d$, $\DDD\subseteq \RR^d$ is a given domain with smooth boundary $\partial \DDD$, $\phi$ is a given nice function on the boundary $\partial \DDD$, and $\dot W$ is the fractional Gaussian noise of Hurst parameters $(H_1, \ldots, H_d)$ and $\diamond $ denotes the Wick product. We find a family of distribution spaces $(\WW_\la\,, \la>0)$, with the property $\WW_{\la}\subseteq \WW_\mu$ when $\la\le \mu$, such that under the condition $\sum_{i=1}^d H_i>d-2$, the solution exists uniquely in $\WW_{\la_0} $ when $\la_0$ is sufficiently big and the solution is not in $\WW_{\la_1}$ when $\la_1$ is sufficiently small.
Keywords: Fractional Brownian field, fractional Gaussian noise, Schrodinger equation, distribution spaces, chaos expansion, Poisson equation, multiplicative noise.
Bibliography: 1. F. Biagini, Y. Hu, B. Oksendal, T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Probab. Appl. (N. Y.), Springer-Verlag, London, 2008.
2. K. L. Chung, Z. X. Zhao, From Brownian motion to Schrodinger's equation, Grundlehren Math. Wiss., vol. 312, Springer-Verlag, Berlin, 1995.
3. D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
4. Q. Han, F. Lin, Elliptic partial differential equations, 2nd ed., Courant Lect. Notes Math.,vol. 1, Amer. Math. Soc., Providence, RI, 2011.
5. T. Hida, H.-H. Kuo, J. Potthoff, L. Streit, White noise. An infinite dimensional calculus,Mathematics and Its Applications, vol. 253, Kluwer Academic Publishers Group, Dordrecht, 1993.
6. Y. Hu, Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Amer. Math. Soc., 175 (2005), no. 825.
7. Y. Hu, Analysis on Gaussian space, World Scientific, Singapore, 2017.
8. Y. Hu, J. Huang, D. Nualart, S. Tindel, Stochastic heat equations with general multiplicative Gaussian noises: Holder continuity and intermittency, Electron. J. Probab., 20 (2015), no. 55.
9. Y. Hu, J. Huang, K. Le, D. Nualart, S. Tindel, Stochastic heat equation with rough dependence in space, to appear in Ann. Probab.
10. Y. Hu, D. Nualart, Stochastic heat equation driven by fractional noise and local time, Prob.Theory Related Fields, 143 (2009), 285{328.
11. Y. Hu, B. Oksendal, T. Zhang, Stochastic partial differential equations driven by multiparameter fractional white noise, Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999), CMS Conf. Proc., vol. 29, Amer. Math. Soc., Providence, RI, 2000, 327-337.
12. Y. Hu, B. Oksendal, T. Zhang, General fractional multiparameter white noise theory and stochastic partial differential equations, Comm. Partial Differential Equations, 29 (2004), 1-23.
13. Y. Hu, J. A. Yan, Wick calculus for nonlinear Gaussian functionals, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), no. 3, 399-414.
14. Yu. G. Kondratiev, Spaces of entire functions of an infinite number of variables, connected with the rigging of a Fock space, Spectral Analysis of Differential Operators, Selecta Mathematica Sovietica, 10 (1991), no. 2, 165-180.
15. Yu. G. Kondratiev, Nuclear spaces of entire functions in problems of infinite-dimensional analysis,Soviet Math. Dokl., 22 (1980), 588-592.
16. J. Memin, Y. Mishura, E. Valkeila, Inequalities for the moments of Wiener integrals with respectto a fractional Brownian motion, Statist. Probab. Lett., 51 (2001), 197-206.
17. Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Math., vol. 1929, Springer-Verlag, Berlin, 2008.
18. D. Nualart, The Malliavin calculus and related topics, 2nd ed., Probab. Appl. (N. Y.), Springer-Verlag, Berlin, 2006.
19. M. Sanz-Sole, I. Torrecilla, A fractional Poisson equation: existence, regularity and approximations of the solution, Stoch. Dyn., 9 (2009), no. 4, 519-548.
20. L. Quer-Sardanyons, S. Tindel, Pathwise definition of second-order SDEs, Stochastic Process. Appl., 122 (2012), no. 2, 466-497.