A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Subordination principles for the multi-dimensional space-time-fractional diffusion-wave equation

Yu. Luchko

Download PDF

Abstract: This paper is devoted to an in-depth investigation of the first fundamental solution to the linear multi-dimensional space-time-fractional diffusion-wave equation. This equation is obtained from the diffusion equation by replacing the first order time-derivative by the Caputo fractional derivative of order $\beta,\ 0 <\beta \leq 2$ and the Laplace operator by the fractional Laplacian $(-\Delta)^{\frac\alpha 2}$ with $0<\alpha \leq 2$. First, a representation of the fundamental solution in form of a Mellin--Barnes integral is deduced by employing the technique of the Mellin integral transform. This representation is then used for establishing of several subordination formulas that connect the fundamental solutions for different values of the fractional derivatives $\alpha$ and $\beta$. We also discuss some new cases of completely monotone functions and probability density functions that are expressed in terms of the Mittag-Leffler function, the Wright function, and the generalized Wright function.

Keywords: multi-dimensional diffusion-wave equation, fundamental solution, Mellin-Barnes integral, Mittag-Leffler function, Wright function, generalized Wright function, completely monotone functions, probability density functions.

Bibliography:
1. E. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal., 3 (2000), 213-230.
2. E. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. thesis, Eindhoven, The Netherlands, 2001.
3. E. Bazhlekova, Completely monotone functions and some classes of fractional evolution equations, Integral Transforms and Special Functions, 26 (2015), no. 9, 737-752.
4. E. Bazhlekova, I. B. Bazhlekov, Subordination approach to multi-term time-fractional diffusion-wave equations, J. Comput. Appl. Math., in press, doi: 10.1016/j.cam.2017.11.003.
5. L. Boyadjiev, Yu. Luchko, Mellin integral transform approach to analyze the multidimensional diffusion-wave equations, Chaos Solitons Fractals, 102 (2017), 127-134.
6. L. Boyadjiev, Yu. Luchko, Multi-dimensional alpha-fractional diffusion-wave equation and some properties of its fundamental solution, Comput. Math. Appl., 73 (2017), 2561-2572.
7. S. D. Eidelman, A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.
8. A. Erdelyi, Higher Transcendental Functions, vol. 2, McGraw-Hill, New York, 1953.
9. A. Erdelyi, Higher Transcendental Functions, vol. 3, McGraw-Hill, New York, 1955.
10. W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, 2nd ed., J. Wiley & Sons Inc., New York, 1971.
11. M. Ferreira, N. Vieira, Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators, J. Math. Anal. Appl., 447 (2016), 329-353.
12. C. Fox, The G- and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395-429.
13. R. Goren
o, J. Loutchko, Yu. Luchko, Computation of the Mittag-Leffer function and its derivatives, Fract. Calc. Appl. Anal., 5 (2002), 491-518.
14. R. Goren
o, A. A. Kilbas, F. Mainardi, S. V. Rogosin. Mittag-Leffer functions, related topics and applications, Springer, Berlin, 2014.
15. A. Hanyga, Multi-dimensional solutions of space-time-fractional diffusion equations, Proc. R. Soc. Lond. A, 458 (2002), 429-450.
16. A. Hanyga, Multidimensional solutions of time-fractional diffusion-wave equations, Proc. R. Soc. Lond. A, 458 (2002), 933-957.
17. H. J. Haubold, A. M. Mathai, R. K. Saxena Mittag-Leffer Functions and Their Applications, J. Appl. Math., 2011 (2011), article ID 298628, 1-51.
18. J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Diff. Equat., 263 (2017), 149-201.
19. V. Kiryakova, Generalized Fractional Calculus and Applications, Longman, Harlow, 1994.
20. A. N. Kochubei, Fractional-order diffusion, Differ. Equ., 26 (1990), 485-492.
21. A. N. Kochubei, Cauchy problem for fractional diffusion-wave equations with variable coeffcients, Appl. Anal., 93 (2014), 2211-2242.
22. M. Kwasnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl.Anal., 20 (2017), 7-51.
23. K.-H. Kim, S. Lim, Asymptotic behaviors of fundamental solution and its derivatives related to space-time fractional differential equations, J. Korean Math. Soc., 53 (2016), 929-967.
24. Yu. Luchko, Operational method in fractional calculus, Fract. Calc. Appl. Anal., 2 (1999), 463-489.
25. Yu. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Comput. Math. Appl., 59 (2010), 1766-1772.
26. Yu. Luchko, Fractional wave equation and damped waves, J. Math. Phys., 54 (2013), 031505.
27. Yu. Luchko, Multi-dimensional fractional wave equation and some properties of its fundamental solution, Commun. Appl. Ind. Math., 6 (2014), e-485.
28. Yu. Luchko, Wave-diffusion dualism of the neutral-fractional processes, J. Comput. Phys., 293 (2015), 40-52.
29. Yu. Luchko, A new fractional calculus model for the two-dimensional anomalous diffusion and its analysis, Math. Model. Nat. Phenom., 11 (2016), 1-17.
30. Yu. Luchko, On some new properties of the fundamental solution to the multi-dimensional space- and time-fractional diffusion-wave equation, Mathematics, 5 (2017), no. 4, 1-16.
31. Yu. Luchko, R. Goren
o, Scale-invariant solutions of a partial di erential equation of fractional order, Fract. Calc. Appl. Anal., 1 (1998), 63-78.
32. Yu. Luchko, V. Kiryakova, The Mellin integral transform in fractional calculus, Fract. Calc. Appl. Anal., 16 (2013), 405-430.
33. F. Mainardi, G. Pagnini, Salvatore Pincherle: The pioneer of the Mellin{Barnes integrals, J. Comput. Appl. Math., 153 (2003), 331-342.
34. F. Mainardi, Yu. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4 (2001), 153-192.
35. O. I. Marichev, Handbook of integral transforms of higher transcendental functions, theory and algorithmic tables, Ellis Horwood, Chichester, 1983.
36. A. M. Mathai, R. K. Saxena, The H-functions with Applications in Statistics and Other Disciplines, John Wiley, New York, 1978.
37. K. S. Miller, S. G. Samko, Completely monotonic functions, Integral Transforms and Special Functions, 12 (2001), 389-402.
38. J. Pruss, Evolutionary Integral Equations and Applications, Birkhauser, Basel, 1993.
39. A. Saichev, G. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753-764.
40. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.
41. R. L. Schilling, R. Song, Z. Vondracek, Bernstein Functions. Theory and Applications, De Gruyter, Berlin, 2010.
42. W. R. Schneider, W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), 134-144.
43. E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. Lond. Math. Soc., 10 (1935), 287-293.
44. S. Yakubovich, Yu. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions, Kluwer Acad. Publ., Dordrecht, 1994.
45. K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1965.