A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Existence and uniqueness of mild solution to stochastic heat equation with white and fractional noises

Yu. Mishura, K. Ralchenko, G. Shevchenko.

Download PDF

Abstract: We prove the existence and uniqueness of a mild solution for a class of non-autonomous parabolic mixed stochastic partial differential equations defined on a bounded open subset $D \subset \R^d$ and involving standard and fractional $L^2(D)$-valued Brownian motions. We assume that the coefficients are homogeneous, Lipschitz continuous and the coefficient at the fractional Brownian motion is an affine function.

Keywords: Fractional Brownian motion, stochastic partial differential equation, Green's function

Bibliography:
1. G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, second ed., Encyclopedia of Mathematics and its Applications, vol. 152, Cambridge University Press, Cambridge, 2014.
2. J. Duan, W. Wang, Effective dynamics of stochastic partial differential equations, Elsevier Insights, Elsevier, Amsterdam, 2014.
3. S. D. Eidel'man, S. D. Ivasisen, Investigation of the Green's matrix of a homogeneous parabolic boundary value problem, Trudy Moskov. Mat. Obsc., 23 (1970), 179-234, English transl. in Trans. Moscow Math. Soc. 23 (1970), 179-242 (1972).
4. S. D. Eidelman, N. V. Zhitarashu, Parabolic boundary value problems, Operator Theory: Advances and Applications, vol. 101, Birkhauser Verlag, Basel, 1998, Translated from the Russian original by Gennady Pasechnik and Andrei Iacob.
5. P. Kotelenez, A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations. Stochastic Anal. Appl., 2 (1984), no. 3, 245-265.
6. B. Maslowski, D. Nualart, Evolution equations driven by a fractional Brownian motion, J. Funct. Anal., 202 (2003), no. 1, 277-305.
7. Y. Mishura, Stochastic calculus for fractional Brownian motion and related processes, vol. 1929, Springer Science & Business Media, 2008.
8. Y. Mishura, G. Shevchenko, Mixed stochastic differential equations with long-range dependence: Existence, uniqueness and convergence of solutions, Comput. Math. Appl., 64 (2012), no. 10, 3217-3227.
9. D. Nualart, A. Rascanu, Differential equations driven by fractional Brownian motion, Collect. Math., 53 (2002), no. 1, 55-81.
10. D. Nualart, P.-A. Vuillermot, Variational solutions for partial differential equations driven by a fractional noise, J. Funct. Anal., 232 (2006), no. 2, 390-454.
11. M. Sanz-Sole, P.-A. Vuillermot, Equivalence and Holder-Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations, Ann. Inst. H. Poincare Probab. Statist., 39 (2003), no. 4, 703-742.
12. M. Sanz-Sole, P. A. Vuillermot, Mild solutions for a class of fractional SPDEs and their sample paths, J. Evol. Equ., 9 (2009), no. 2, 235-265.
13. G. Shevchenko, Mixed stochastic delay differential equations, Theory Probab. Math. Statist., 89 (2014), 181-195.
14. L. Tubaro, An estimate of Burkholder type for stochastic processes defined by the stochastic integral, Stochastic Anal. Appl., 2 (1984), no. 2, 187-192.
15. M. C. Veraar, Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations, J. Evol. Equ., 10 (2010), no. 1, 85-127.
16. J. Zabczyk, A mini course on stochastic partial differential equations, Stochastic climate models (Chorin, 1999), Progr. Probab., vol. 49, Birkhauser, Basel, 2001, 257-284.