Theory of Probability and Mathematical Statistics
Existence and uniqueness of mild solution to stochastic heat equation with white and fractional noises
Yu. Mishura, K. Ralchenko, G. Shevchenko.
Download PDF
Abstract: We prove the existence and uniqueness of a mild solution for a class of non-autonomous parabolic mixed stochastic partial differential equations defined on a bounded open subset $D \subset \R^d$ and involving standard and fractional $L^2(D)$-valued Brownian motions. We assume that the coefficients are homogeneous, Lipschitz continuous and the coefficient at the fractional Brownian motion is an affine function.
Keywords: Fractional Brownian motion, stochastic partial differential equation, Green's function
Bibliography: 1. G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, second ed., Encyclopedia of Mathematics and its Applications, vol. 152, Cambridge University Press, Cambridge, 2014.
2. J. Duan, W. Wang, Effective dynamics of stochastic partial differential equations, Elsevier Insights, Elsevier, Amsterdam, 2014.
3. S. D. Eidel'man, S. D. Ivasisen, Investigation of the Green's matrix of a homogeneous parabolic boundary value problem, Trudy Moskov. Mat. Obsc., 23 (1970), 179-234, English transl. in Trans. Moscow Math. Soc. 23 (1970), 179-242 (1972).
4. S. D. Eidelman, N. V. Zhitarashu, Parabolic boundary value problems, Operator Theory: Advances and Applications, vol. 101, Birkhauser Verlag, Basel, 1998, Translated from the Russian original by Gennady Pasechnik and Andrei Iacob.
5. P. Kotelenez, A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations. Stochastic Anal. Appl., 2 (1984), no. 3, 245-265.
6. B. Maslowski, D. Nualart, Evolution equations driven by a fractional Brownian motion, J. Funct. Anal., 202 (2003), no. 1, 277-305.
7. Y. Mishura, Stochastic calculus for fractional Brownian motion and related processes, vol. 1929, Springer Science & Business Media, 2008.
8. Y. Mishura, G. Shevchenko, Mixed stochastic differential equations with long-range dependence: Existence, uniqueness and convergence of solutions, Comput. Math. Appl., 64 (2012), no. 10, 3217-3227.
9. D. Nualart, A. Rascanu, Differential equations driven by fractional Brownian motion, Collect. Math., 53 (2002), no. 1, 55-81.
10. D. Nualart, P.-A. Vuillermot, Variational solutions for partial differential equations driven by a fractional noise, J. Funct. Anal., 232 (2006), no. 2, 390-454.
11. M. Sanz-Sole, P.-A. Vuillermot, Equivalence and Holder-Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations, Ann. Inst. H. Poincare Probab. Statist., 39 (2003), no. 4, 703-742.
12. M. Sanz-Sole, P. A. Vuillermot, Mild solutions for a class of fractional SPDEs and their sample paths, J. Evol. Equ., 9 (2009), no. 2, 235-265.
13. G. Shevchenko, Mixed stochastic delay differential equations, Theory Probab. Math. Statist., 89 (2014), 181-195.
14. L. Tubaro, An estimate of Burkholder type for stochastic processes defined by the stochastic integral, Stochastic Anal. Appl., 2 (1984), no. 2, 187-192.
15. M. C. Veraar, Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations, J. Evol. Equ., 10 (2010), no. 1, 85-127.
16. J. Zabczyk, A mini course on stochastic partial differential equations, Stochastic climate models (Chorin, 1999), Progr. Probab., vol. 49, Birkhauser, Basel, 2001, 257-284.