Theory of Probability and Mathematical Statistics
Stein‒Haff identity for the exponential family
G. Alfelt
Download PDF
Abstract: In this paper, the Stein–Haff identity is established for positive-definite and symmetric random matrices belonging to the exponential family. The identity is then applied to the matrix-variate gamma distribution, and an estimator that dominates the maximum likelihood estimator in terms of Stein’s loss is obtained. Finally, a simulation study is conducted in order to support the theoretical results.
Keywords: Random matrices, matrix-variate gamma distribution, decision theory.
Bibliography: 1. T. Bodnar, A. Gupta, An identity for multivariate elliptically contoured matrix distribution, Statistics & Probability Letters, 79 (2009), 1327-1330.
2. D. K. Dey, C. Srinivasan, Estimation of a covariance matrix under Stein’s loss, Ann. Statist., 13 (1985), 1581-1591.
3. T. S. Ferguson, Mathematical Statistics: A Decision Theoretic Approach, Academic Press, New York, 1967.
4. A. K. Gupta, D. K. Nagar, Matrix variate distributions, CRC Press, 2000.
5. L. R. Haff, An identity for the Wishart distribution with applications, J. Multivariate Anal., 9 (1979), 531-542.
6. D. Harville, Matrix algebra from statistician’s perspective, Springer, New York, 1997.
7. W. James, C. Stein, Estimation with quadratic loss, In: Proc. Fourth Berkeley Symp. Math. Statist. Prob., 1 (1961), 361-380.
8. Y. Konno, Improving on the sample covariance matrix for a complex elliptically contoured distribution, Journal of Statistical Planning and Inference, 7 (2007), 2475-2486.
9. Y. Konno, Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss, J. Multivariate Anal., 100 (2009), 2237-2253.
10. T. Kubokawa, A revisit to estimation of the precision matrix of the Wishart distribution, J. Statist. Res., 39 (2005), 91-114.
11. T. Kubokawa, M. Srivastava, Robust improvement in estimation of a covariance matrix in an elliptically contoured distribution, Ann. Statist., 27 (1999), 600-609.
12. T. Kubokawa, M. Srivastava, Estimation of the precision matrix of a singular Wishart distribution and its application in high dimensional data, J. Multivariate Anal., 99 (2008), 1906-1928.
13. R. J. Muirhead, Aspects of multivariate statistical theory, Wiley, New York, 1982.
14. Y. Sheena, Unbiased estimator of risk for an orthogonal invariant estimator of a covariance matrix, Journal of the Japan Statistical Society., 25 (1995), no. 1, 35-48.
15. C. Stein, Lectures on the theory of estimation of many parameters, Studies in the Statistical Theory of Estimation I (eds. I. A. Ibraimov and M. S. Nikulin), Proceeding of Scientific Seiminars of the Steklov Institute, Leningrad Division, 74 (1977), 4-65.
16. A. Takemura, An orthogonally invariant minimax estimator of the covariance matrix of a multivariate normal population, Tsukaba J. Math., 8 (1984), 367-376.
17. H. Tsukuma, Improvement on the best invariant estimators of the normal covariance and precision matrices via a lower triangular subgroup, J. Japan Statist. Soc., 44 (2014), 195-218.
18. H. Van der Vaart, On certain characteristics of the distribution of the latent roots of a symmetric random matrix under general conditions, Ann. Math. Statist., 32 (1961), 864-873.