Theory of Probability and Mathematical Statistics
Orthogonal regression for observations from mixtures
R. Maiboroda, H. Navara, O. Sugakova
Download PDF
Abstract: A generalization of orthogonal regression estimators is considered for estimation of simple regression coefficients in the error-in-variables model with observations from a mixture with varying concentrations. Consistency and asymptotic normality of the estimators are shown. The dispersion matrix is evaluated.
Keywords: mixture with varying concentrations, orthogonal regression, generalized estimating equations.
Bibliography: 1. C.-L. Cheng, J. Van Ness, Statistical Regression with Measurement Error , Kendall's Library of Statistics 6, Arnold, London, 1999.
2. Р. Майборода, О. Сугакова, Оцінювання та класифікація за спостереженнями із суміші, ВПЦ "Київський університет", Київ, 2008.
3. S. Masiuk, A. Kukush, S. Shklyar, M. Chepurny, I. Likhtarov (ed.), Radiation Risk Estimation: Based on Measurement Error Models , 2nd ed. (de Gruyter series in Mathematics and Life Sciences, vol. 5). de Gruyter, 2017.
4. T. Benaglia, D. Chauveau, D. Hunter, D. Young, mixtools : An R Package for Analyzing Finite Mixture Models , Journal of Statistical Software, 32 (2009), no 6, 1-29.
5. S. Faria, G. Soromenhob, Fitting mixtures of linear regressions, Journal of Statistical Computation and Simulation 80, (2010), no 2, 201-225.
6. B. Grun, F. Leisch, Fitting finite mixtures of linear regression models with varying & fixed effects in R, Proceedings in Computational Statistics, Physica Verlag, Heidelberg, Germany, (2006), 853-860.
7. R. Maiboroda, O. Sugakova, Statistics of mixtures with varying concentrations with application to DNA microarray data analysis , Journal of Nonparametric Statistics, 24 (2012), No 1, 201-205.
8. D. Liubashenko, R. Maiboroda, Linear regression by observations from mixtures with varying concentrations , Modern Stochastics: Theory and Applications, 2 (2015), 343-353.
9. J. Shao, Mathematical statistics , Springer-Verlag, New York, 1998.
10. R. Branham, Total Least Squares in Astronomy, Total Least Squares and Errors-in-Variables Modeling. Springer, Dordrecht, (2002), 375-384.