A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Calculation of extremums of entropy functionals

Y. S. Mishura, H. S. Zhelezniak

Download PDF

Abstract: We consider a sum of two independent Wiener processes with a drift and construct new probabilistic measures, with respect to which the drift is zero. Among these measures, we are looking for those that minimize or maximize certain including entropy functionals.

Keywords: Wiener process, Radon–Nikodym derivative, entropy functional, minimization, maximization.

Bibliography:
1. H. Follmer, A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyte, Berlin (2002), 121-130.
2. C. Leonard, Minimization of entropy functionals , Journal of Mathematical Analysis and Applications (2008), Volume 346, Issue 1, 183-204.
3. Y. Mishura, H. Zhelezniak, Extreme measures for entropy functionals , Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics (2017), no. 4, 15-20.