A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



On the product of a singular Wishart matrix and a singular Gaussian vector in high dimension

T. Bodnar, S. Mazur, S. Muhinyuza, N. Parolya

Download PDF

Abstract: In this paper we consider the product of a singular Wishart random matrix and a singular normal random vector. A very useful stochastic representation of this product is derived, using which its characteristic function and asymptotic distribution under the double asymptotic regime are established. We further document a good finite sample performance of the obtained high-dimensional asymptotic distribution via an extensive Monte Carlo study.

Keywords: Singular Wishart distribution, singular normal distribution, stochastic representation, high-dimensional asymptotics.

Bibliography:
1. J. M. Bernardo, A. F. M. Smith, Bayesian theory, Chichester: Wiley, 1994.
2. O. Bodnar, Sequential surveillance of the tangency portfolio weights, International Journal of Theoretical and Applied Finance, 12 (2009), 797–810.
3. T. Bodnar, S. Mazur, Y. Okhrin, On exact and approximate distributions of the product of the Wishart matrix and normal vector, Journal of Multivariate Analysis, 122 (2013), 70–81.
4. T. Bodnar, S. Mazur, K. Podgórski, Singular inverse Wishart distribution and its application to portfolio theory, Journal of Multivariate Analysis, 143 (2016), 314–326.
5. T. Bodnar, Y. Okhrin, Properties of the singular, inverse and generalized inverse partitioned Wishart distributions, Journal of Multivariate Analysis, 99 (2008), 2389– 2405.
6. T. Bodnar, Y. Okhrin, On the product of inverse Wishart and normal distributions with applications to discriminant analysis and portfolio theory, Scandinavian Journal of Statistics, 38 (2011), 311–331.
7. M. Britten-Jones, The sampling error in estimates of mean-variance efficient portfolio weights, The Journal of Finance, 54 (1999), 655–671.
8. J. A. Dı́az-Garcı́a, R. G. Jáimez, K. V. Mardia, Wishart and pseudo-Wishart distributions and some applications to shape theory, Journal of Multivariate Analysis, 63 (1997), 73–87.
9. G. H. Givens, J. A. Hoeting, Computational statistics, John Wiley & Sons, 2012.
10. A. Gupta, D. Nagar, Matrix Variate Distributions, Chapman and Hall/CRC, Boca Raton, 2000.
11. A. Gupta, T. Varga, T. Bodnar, Elliptically contoured models in statistics and portfolio theory, Springer, 2013.
12. J. D. Jobson, B. Korkie, Estimation for Markowitz efficient portfolios, Journal of the American Statistical Association, 75 (1980), 544–554.
13. R. Kan, G. Zhou, Optimal portfolio choice with parameter uncertainty, Journal of Financial and Quantitative Analysis, 42 (2007), 621–656.
14. C. Khatri, A note on Mitra’s paper ”A density free approach to the matrix variate beta distribution”, Sankhyā: The Indian Journal of Statistics, Series A, 32 (1970), 311–318.
15. I. Kotsiuba, S. Mazur, On the asymptotic and approximate distributions of the product of an inverse Wishart matrix and a gaussian random vector, Theory of Probability and Mathematical Statistics, 93 (2015), 95–104.
16. R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, 1982.
17. D. Pappas, K. Kiriakopoulos, G. Kaimakamis, Optimal portfolio selection with singular covariance matrix, International Mathematical Forum, 5 (2010), 2305–2318.
18. S. B. Provost, E. M. Rudiuk, The exact distribution of indefinite quadratic forms in noncentral normal vectors, Annals of the Institute of Statistical Mathematics, 48 (1996), 381–394.
19. A. C. Rencher, W. F. Christensen, Methods of multivariate analysis, third edition, Wiley Online Library, 2012.
20. M. Srivastava, C. Khatri, An introduction to multivariate statistics, North-Holland, New York, 1979.
21. M. S. Srivastava, Singular Wishart and multivariate beta distributions, The Annals of Statistics, 31 (2003), 1537–1560.
22. H. Uhlig, On singular Wishart and singular multivariate beta distributions, The Annals of Statistics, 22 (1994), 395–405.