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TESTING HYPOTHESES FOR MEASURES WITH DIFFERENT

MASSES: FOUR OPTIMIZATION PROBLEMS
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Abstract. We consider a problem similar to testing two composite hypotheses, where measures con-

stituting the hypotheses are not probabilities and may have different masses. Then it is naturally to
consider four different optimization problems. To characterize optimal solutions we introduce corre-

sponding dual optimization problems. Our main goal is to find sufficient conditions for the existence

of saddle points in each problem.
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1. Introduction

The problem of testing two composite hypotheses in statistics has a long history.
Here we briefly mention some key papers. If the hypotheses are simple, the fundamental
Neyman–Pearson lemma describes a test which minimizes the second type error (or
maximizes the power) among all tests of given level. A classical result of Lehmann [10,
Section 8.1] gives sufficient conditions under which the Neyman–Pearson test for Bayesian
mixtures is a maximin test for composite hypotheses. However, it says nothing how to
find such mixtures. Moreover, they may not exist. Krafft and Witting [9] introduced
a dual problem, whose solution, if it exists, provides required mixtures. Baumann [1]
introduced a dual problem in the space of finitely additive set functions. This problem
always has a solution, which allows us to give a complete characterization of maximin
tests, but it has only theoretical value, since it involves finitely additive set functions.
Cvitanić and Karatzas [2] extended the domain of the definition of the dual problem
introduced by Krafft and Witting and thus weakened the assumptions under which the
dual problem has a solution. Their result was generalized by Gushchin [6] where the
reader can find a more detailed history of the problem and a discussion concerning
relations between different existing results.

At the same time in applications, especially in mathematical finance, there often ap-
pear optimization problems of the same type but where the hypothesis and alternative
contain (nonnegative and finite) measures that are not assumed to be probability mea-
sures. Of course, these measures may have different masses inside each family. Then
there appear naturally four different optimization problems (which are the same in the
case of probability measures). For example, if the alternative contains measures with
different masses, then maximizing the smallest “power” or minimizing the largest “prob-
ability of type II error” are different problems. A similar manipulation with a constraint
on “the probability of type I error” provides two other problems. For all four problems,
we find a dual optimization problem, whose solution gives a “least favorable” pair of
measures determining a solution to the corresponding initial problem.

Though this four optimization problems are the same in the case of probability mea-
sures, the corresponding dual problems, being very similar, are different. Moreover, the
existence of solutions of dual problems is proved under different assumptions. The dual
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optimization problem introduced in [6] is one of these four problems which requires the
weakest assumptions.

The paper is organized as follows. Our main results are stated in Section 2. We
deal with the case of arbitrary finite measures. Theorem 1 says that a minimax (or
maximin) test always exists in all four problems. We also formulate dual minimization
problems and show that there are no duality gaps. To ensure the existence of solutions to
dual problems, in general, one should extend the domain of definition of dual problems.
Conditions under which duality relations preserve and saddle points exist are given in
Theorem 2. Section 3 contains the proofs. Intermediate statements are presented in
a number of lemmas, which might be useful if the assumptions of Theorem 2 are not
satisfied.

The families of measures corresponding to the null hypothesis and the alternative are
assumed to be dominated. This allows us to identify a measure with its density and thus
to consider the null hypothesis and the alternative as subsets H and G respectively of
a positive cone L1

+ on some probability space (Ω,F ,P). E stands for expectation with
respect to P, while expectation with respect to a measure Q is denoted by EQ. Here and
below L1 and L∞ are the Banach spaces L1(Ω,F ,P) and L∞(Ω,F ,P) of P-integrable
and P-essentially bounded random variables respectively (random variables that coincide
P-a.s. are identified) with the usual norms, whereas L0 = L0(Ω,F ,P) is the space of real-
valued random variables equipped with the topology of convergence in P-probability. Let
us emphasize that infinite values are not allowed for elements of L0. Let Φ be the set of
all randomized tests, that is, of measurable functions ϕ : Ω → [0, 1]. Finally, denote by
co(·) the convex hull of a set of random variables. The bar over a subset of L0 stands for
its closure.

Let us briefly describe how such optimization problems appear in mathematical fi-
nance. Assume that the discounted price process of d underlying assets is described as an
Rd-valued semimartingale S = (St)t∈[0,T ] on a filtered probability space (Ω,F , (Ft)t∈[0,T ],
P). Let Pσ denote the set of probability measures P∗ equivalent to P such that S is a
σ-martingale with respect to P∗. A self-financing strategy is a pair (V0,η) where V0 ≥ 0
is an initial capital and η is a predictable process such that the value process

Vt = V0 +

t
∫

0

ηs dSs, t ∈ [0, T ],

is well defined. Such a strategy is called admissible if the corresponding value process V
satisfies Vt ≥ 0 for all t ∈ [0, T ].

Consider a contingent claim with payoff H, where H is an FT -measurable nonnegative
random variable. The superhedging price U0 is defined as the smallest amount V0 such
that there exists an admissible strategy (V0,η) with VT ≥ H. The corresponding strategy
is called the superhedging strategy of the claim H. The dual characterization of the
superhedging price U0 is

U0 = sup
P∗∈Pσ

EP∗H < +∞.

From a practical point of view the cost of superhedging is often too high, see e.g.
[7]. For this reason, it is natural to study the possibility of investing less capital than

the superhedging price. Namely, let Ṽ0 < U0 be a given maximal amount of money
the investor is willing to spend. Then we look for an admissible strategy (V0,η) with

0 < V0 ≤ Ṽ0 that minimizes the risk of losses due to the shortfall {VT < H}. The size of
a shortfall (H − VT )+ can be written as (1−ϕ)H, where

ϕ = 1{H≤VT } +
VT

H
1{H>VT }
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is called a success ratio. It is a randomized test, and in this way tests come into consid-
eration. If ϕ is a non-randomized test, Eϕ is just the probability P(VT ≥ H) that the
hedge is successful. Typically, the corresponding dynamic optimization problem can be
split in two problems: to find a modified claim ϕ̃H, where ϕ̃ is a randomized test solving
a corresponding static optimization problem and to find a superhedging strategy for the
modified claim ϕ̃H.

As an example, let us mention a static optimization problem appearing in [4]. It
is required to maximize the expected success ratio Eϕ over tests ϕ ∈ Φ satisfying the
constraint
∫

ϕH dP∗ ≤ Ṽ0, where P∗ runs over the class Pσ. The constraint corre-

sponds to the requirement EP∗ [VT ] ≤ Ṽ0. Here we have a composite null hypothesis

H =
{
H dP∗

dP : P∗ ∈ Pσ
}

and the simple alternative G = {1}. This optimization problem

corresponds both to Problem 1 and 2 introduced in the following section.
We also mention the papers [12], [13], and [17], where the shortfall risk is measured

by a coherent risk measure. As a result, the aim is to minimize

sup
Q∈Q

EQ[(H − VT )+] = sup
Q∈Q

EQ[H(1−ϕ)],

where Q ia a set of probability measures. Here we obtain Problem 2 with the same
composite null hypothesis H as above and a composite alternative G =

{
H dQ

dP : Q ∈ Q
}

.
We also refer to [5, 8, 11, 14–16, 19, 20] for further related results on partial hedging,

in particular, for other measures that quantify the shortfall risk.

2. Main results

Let α and β be real numbers. Put

Φα :=
{
ϕ ∈ Φ | sup

h∈H
E[hϕ] ≤ α

}
, Φ̌β :=

{
ϕ ∈ Φ | inf

h∈H
E[h(1−ϕ)] ≥ β

}
.

The sets Φα and Φ̌β are nonempty if α ≥ 0 and β ≤ infh∈H E[h], respectively.
We consider the following optimization problems:

to maximize inf
g∈G

E[gϕ] over ϕ ∈ Φα, (1)

to minimize sup
g∈G

E[g(1−ϕ)] over ϕ ∈ Φα, (2)

to maximize inf
g∈G

E[gϕ] over ϕ ∈ Φ̌β, (3)

to minimize sup
g∈G

E[g(1−ϕ)] over ϕ ∈ Φ̌β. (4)

These problems will be referred to as Problems 1, 2, 3, and 4, respectively.
It is convenient to consider all the problems as maximization problems, so we change

sign in Problems 2 and 4. Moreover, let us introduce the following unifying notation in
the table below:

Table 1. The definition of αi, Gi, Hi, Fi

i = 1 i = 2 i = 3 i = 4

αi α −β

Gi(g,ϕ) E[gϕ] E[g(ϕ− 1)] E[gϕ] E[g(ϕ− 1)]

Hi(h,ϕ) E[hϕ] E[hϕ] E[h(ϕ− 1)] E[h(ϕ− 1)]

Fi(g, h) E
[
(g − h)+

]
−E
[
g ∧ h

]
E
[
g ∨ h

]
E
[
(g − h)−

]
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The functions Gi and Hi are defined on L1×L∞, and Fi are defined on L1×L1; note,
however, that they are also well defined if g and h are nonnegative random variables and
ϕ ∈ Φ. Note also that differences between different Fi are linear functionals:

(x− y)+ = −(x ∧ y) + x = x ∨ y − y = (x− y)− + (x− y).

We can now rewrite the problems (1)–(4) in the form

to maximize inf
g∈G

Gi(g,ϕ) over ϕ ∈ Φi :=
{
ϕ ∈ Φ | sup

h∈H
Hi(h,ϕ) ≤ αi

}
, (5)

i = 1, 2, 3, 4.

Theorem 1. Let G and H be nonempty subsets of L1
+, αi ≥ 0 in Problems 1 and 2 and

αi ≥ − infh∈H E[h] in Problems 3 and 4. Then, for every i = 1, 2, 3, 4, there exists a
randomized test ϕ̃ ∈ Φi which attains the supremum in

vi := sup
ϕ∈Φi

(
inf
g∈G

Gi(g,ϕ)
)
. (6)

Define also the dual minimization problem

vi := inf
(g,h)∈co(G)×co(H), z≥0

(
Fi(g, zh) + αiz

)
. (7)

Then vi = vi.

It may happen that the minimization problem (7) has no solution. In Theorem 2 we
establish sufficient assumptions for the (extended) minimization problem

inf
(g,h)∈co(G)×co(H), z≥0

(
Fi(g, zh) + αiz

)
. (8)

to have a solution with the same value.

(A): αi > 0 in Problems 1 and 2; αi > − infh∈H E[h] in Problems 3 and 4;
(H1): the family co(H) is bounded in P-probability;
(G1): the family G is bounded in L1;
(H2): the family H is uniformly integrable;
(G2): the family G is uniformly integrable;
(GH): the family

{
g ∧ h : g ∈ co(G), h ∈ co(H)

}
is uniformly integrable.

The uniform integrability of
{
g ∧ h : g ∈ G, h ∈ H

}
is not sufficient for (GH).

Theorem 2. Let G and H be nonempty subsets of L1
+. Assume that there hold

• (A), (H1), and (G2) in Problem 1;
• (A), (H1), (G1), and (GH) in Problem 2;
• (A), (G2), and (H2) in Problem 3;
• (A), (G1), and (H2) in Problem 4.

Then, for every i = 1, 2, 3, 4, the infimum in (8) is attained and

vi = inf
(g,h)∈co(G)×co(H), z≥0

(
Fi(g, zh) + αiz

)
> −∞. (9)

For arbitrary ϕ ∈ Φi and (g, h, z) ∈ co(G)× co(H)× R+ the following are equivalent :
(i) ϕ is a solution to (5) and (g, h, z) is a solution to (8).
(ii)

ϕ =

{
1, if g > zh,
0, if g < zh,

P-a.s., (10)

Hi(h,ϕ) = αi if z > 0, (11)

Gi(g,ϕ) ≤ Gi(g
′,ϕ) for all g′ ∈ G. (12)
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If E[h] is constant on H (in particular, if the family H consists of probability densities),
then Problem 1 coincides with Problem 3 and Problem 2 coincides with Problem 4
provided α+ β = E[h]. The dual problems (7) in the corresponding pairs also coincide.
However, the dual problems (8) are different for different i in general. Thus we have a
possibility to choose the problem inside the corresponding pair such that requires weaker
assumptions in Theorem 2. Obviously, the assumptions corresponding to Problem 1
are weaker than those corresponding to Problem 3, and Problem 2 is preferable than
Problem 4. Similarly, if E[g] is constant on G (in particular, if the family G consists of
probability densities) then Problem 1 coincides with Problem 2 and Problem 3 coincides
with Problem 4. Assumptions of Theorem 2 are weaker in Problems 2 and 4 than in
Problems 1 and 3 respectively. Finally, if E[h] is constant on H and E[g] is constant on
G (in particular, if the families H and G consist of probability densities), Problems 1–4
coincide, and the existence of a solution to the dual problem (8) is proved under weaker
assumptions in Problem 2. This explains why the assumptions of Theorem 2 in the case
of Problem 2 coincide with the assumptions of Theorem 1.1 (ii) in [6].

3. Proofs

Proof of Theorem 1. The proof is based on computations similar to those that were used
in the proof of the corresponding statement in [6, p. 116]. We introduce the functions
Mi and N on the product X := L1 × L1 × R of Banach spaces by

Mi(g, h, z) := Fi(g, h) + αiz, N(g, h, z) := δco(G)(g) + δJ (h, z), (13)

where J := {(zh, z) | h ∈ co(H), z ∈ R+} and δ is the convex indicator function:
δA(x) = 0 if x ∈ A and δA(x) = +∞ if x /∈ A. Mi and N are proper convex functions
and Mi is finite and continuous everywhere. Hence, by the Fenchel–Rockafellar duality
theorem [18],

vi = inf
(g,h,z)∈X

{Mi(g, h, z) + N(g, h, z)} =

= max
(ψ,φ,x)∈X∗

{−M∗i (−ψ,−φ,−x)−N∗(ψ,φ, x)}, (14)

where, as usual, “max” denotes a supremum which is attained, ∗ means the Fenchel
conjugate defined on the dual space X∗ := L∞ × L∞ × R, and the first equality is

immediate from definitions. Let (ψ̃, φ̃, x̃) be a triple that attains the maximum in (14).
Calculating M∗i and N∗, we get

M∗i (ψ,φ, x) : = sup
(g,h,z)∈X

{
E[gψ+ hφ] + zx−Mi(g, h, z)

}
=

=


δΦ(ψ) + δ{−ψ}(φ) + δ{αi}(x), if i = 1,
δΦ−1(ψ) + δ{−ψ−1}(φ) + δ{αi}(x), if i = 2,
δΦ(ψ) + δ{1−ψ}(ϕ) + δ{αi}(x), if i = 3,
δΦ−1(ψ) + δ{−ψ}(ϕ) + δ{αi}(x), if i = 4,

N∗(ψ,φ, x) : = sup
(g,h,z)∈X

{
E[gψ+ hφ] + zx−N(g, h, z)

}
=

= sup
g∈co(G)

E[gψ] + δ{ sup
h∈co(H)

E[hφ]≤−x}(φ, x) =

= sup
g∈G

E[gψ] + δ{ sup
h∈H

E[hφ]≤−x}(φ, x).
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Thus, putting ϕ := φ+ 1{3,4}(i), we get

−M∗i (−ψ,−φ,−x)−N∗(ψ,φ, x) =

=

{
inf
g∈G

Gi(g,ϕ), if x = −αi, ψ = 1{2,4}(i)−ϕ, ϕ ∈ Φα;

−∞, otherwise.

Hence, ϕ̃ := φ̃+1{3,4}(i) is a solution to the maximization problem (5) and vi = vi. �

Everywhere below in this section the assumptions of Theorem 1 are supposed to be
satisfied.

Lemma 1. A test ϕ ∈ Φi is a solution to (5) if and only if there is a sequence
{(gn, hn, zn)} in co(G)× co(H)× R+ such that

Fi(gn, znhn) + αizn → inf
g∈G

Gi(g,ϕ). (15)

There is a sequence {(gn, hn, zn)} in co(G)× co(H)× R+ satisfying (15) and such that

zn → z, gn → g, znhn → f P-a.s., (16)

where z ∈ [0,+∞], g and f are random variables with values in [0,+∞].

Proof. The first claim follows directly from Theorem 1. Take any sequence {(g′n, h′n, z′n)}
in co(G) × co(H) × R+ satisfying (15). Using the standard techniques of passing to
forward-convex combinations based on [3, Lemma 9.8.1], one can construct a sequence
{(gn, fn, zn)} such that (gn, fn, zn) ∈ co({(g′n, z′nh′n, z′n), (g′n+1, z

′
n+1h

′
n+1, z

′
n+1), . . . }) for

every n and
zn → z, gn → g, fn → f P-a.s.,

where z, g and f are as above. It is clear that fn = znhn for some hn ∈ co(H), while

lim sup
n

{
Fi(gn, fn) + αizn

}
≤ lim

n

{
Fi(g

′
n, z
′
nh
′
n) + αiz

′
n

}
by the convexity of Fi. Hence, the sequence {(gn, hn, zn)} satisfies (15) as well by The-
orem 1. �

Much of the subsequent arguments is based on the following two inequalities:

Fi(g, zh) + αiz ≥ Gi(g,ϕ) + z
{
αi −Hi(h,ϕ)

}
≥ inf

g∈G
Gi(g,ϕ). (17)

The second one is true if, at least, g ∈ co(G), h ∈ co(H), z ≥ 0, and ϕ ∈ Φi. The first
inequality is valid for integrable real variables g, h, real z, and ϕ ∈ Φ in view of the
identities

Fi(g, zh)−
{
Gi(g,ϕ)− zHi(h,ϕ)

}
= E

[
(g − zh)+(1−ϕ)

]
+ E

[
(g − zh)−ϕ

]
. (18)

Lemma 2. Assume (G1) if i = 2 or i = 4. Then
(i) vi ∈ R;
(ii) given ϕ ∈ Φi and a sequence {(gn, hn, zn)} in co(G)× co(H)×R+ satisfying (16),

we have (15) if and only if

ϕ =

{
1, if g > f ,
0, if g < f ,

P-a.s.,

the sequence (gn − znhn)+(1−ϕ) + (gn − znhn)−ϕ is uniformly integrable,

zn
(
αi −Hi(hn,ϕ)

)
→ 0,

Gi(gn,ϕ)→ inf
g∈G

Gi(g,ϕ).

Proof. (i) is trivial, and (ii) follows from relations (17) and (18) applied to gn, hn, zn,
and ϕ after passing to the limit as n→∞. �
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Lemma 3. Assume (G1) if i = 2 or i = 4, and (A). If a sequence {(gn, hn, zn)} in
co(G)× co(H)× R+ satisfies (15) and (16), then z < +∞.

Proof. The proof is immediate in all four cases. For example, in Problem 4

Fi(gn, znhn) + αizn ≥ znE[hn]− E[gn] + αizn ≥ zn
(

inf
h∈H

E[h] + αi

)
− sup

g∈G
E[g],

which shows that zn must be bounded to have a finite limit in (15). �

Lemma 4. Assume (H1). If a sequence {(gn, hn, zn)} in co(G) × co(H) × R+ satisfies

(15) and (16), and z < +∞, then f = zh, where a random variable h is in co(H) and
takes finite values.

Proof. Obviously, if z > 0, then h = f/z = limn hn P-a.s., in particular, h < +∞ P-a.s.
in view of (H1). Let z = 0. Due to (H1), we have f = 0, and one may take any element

in co(H) as h. �

Proof of Theorem 2. Let ϕ ∈ Φi be a solution to (5), g ∈ co(G), h ∈ co(H), z ∈ R+.
Then

Gi(g,ϕ) ≥ vi (19)

in view of (G2) if i = 1 or i = 3, and by Fatou’s lemma if i = 2 or i = 4. Similarly,

Hi(h,ϕ) ≤ αi (20)

by Fatou’s lemma if i = 1 or i = 2, and due to (H2) if i = 3 or i = 4. In particular,
Gi(g,ϕ) > −∞ and Hi(h,ϕ) < +∞. Hence, the middle term in (17) is well defined and
the second inequality in (17) is true. This also implies that Fi(g, zh) > −∞ and the first
inequality in (17) takes place. Thus, we have (9).

Next, using Lemma 1, take a sequence {(gn, hn, zn)} in co(G)× co(H)×R+ satisfying
(15) and (16), and let h be as in Lemma 4. Then it follows from (15) that

Fi(g, zh) ≤ vi. (21)

Indeed, if i 6= 2, this is a consequence of Fatou’s lemma, and (GH) is used if i = 2.
Observe that, for i = 1 or i = 3, we have g < +∞ P-a.s. because F (g, zh) = +∞
otherwise. For i = 2 or i = 4, g is even integrable due to (G1). Hence g ∈ co(G).
Combining (17) and (21), we can conclude now that (g, h, z) attains the infimum in (8).

It remains to observe that (i) takes place if and only if

Fi(g, zh) + αiz = inf
g∈G

Gi(g,ϕ).

In view of (17), (18), (19), and (20), the latter is equivalent to (ii). �
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4. H. Föllmer, P. Leukert, Quantile hedging, Finance & Stochastics, 3 (1999), no. 3, 251–273.
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ÏÅÐÅÂIÐÊÀ ÃIÏÎÒÅÇ ÄËß ÌIÐ IÇ ÐIÇÍÈÌÈ ÌÀÑÀÌÈ: ×ÎÒÈÐÈ
ÎÏÒÈÌIÇÀÖIÉÍI ÇÀÄÀ×I

Î. Î. ÃÓÙIÍ, Ñ. Ñ. ËÅÙÅÍÊÎ

Àíîòàöiÿ. Ìè ðîçãëÿäà¹ìî çàäà÷ó, àíàëîãi÷íó ïåðåâiðöi äâîõ ñêëàäíèõ ãiïîòåç, äå ìiðè, ÿêi ñêëà-
äàþòü ãiïîòåçè, íå ¹ éìîâiðíiñíèìè òà ìîæóòü ìàòè ðiçíi ìàñè. Òîäi ïðèðîäíî ðîçãëÿíóòè ÷îòèðè
ðiçíi îïòèìiçàöiéíi çàäà÷i. Äëÿ õàðàêòåðèçàöi¨ îïòèìàëüíèõ ðîçâ'ÿçêiâ ìè ââîäèìî âiäïîâiäíi äâî-
¨ñòi îïòèìiçàöiéíi çàäà÷i. Íàøà ãîëîâíà ìåòà � çíàéòè äîñòàòíi óìîâè iñíóâàííÿ ñiäëîâèõ òî÷îê ó
êîæíié çàäà÷i.


