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ON RATE OF CONVERGENCE IN ALMOST
SURE CENTRAL LIMIT THEOREM
VIK 519.21

A. I. MARTIKAINEN

PE3ioME. We construct a version of the almost sure CLT with a power rate of con-
vergence to the limit law. This rate is only logarithmic in the well-known logarithmic
version of the almost sure CLT.

1. INTRODUCTION

Throughout X, X3, ..., X,,... is asequence of independent and identically distributed
random variables with E X,, = 0 and EX2 il Puti St dn L Xn. The central
limit theorem claims that

P(Sa <zvn) — 8(z) = %/ eV 2 gy
T J—co

uniformly in = € R. The rate of convergence in this limit theorem is well studied. For
example, the famous Berry-Esseen’s inequality gives for n > 1 the estimate

sup [P (50 < 2vA1) - 8(a)| 35\';‘7'3‘ &)

Put I; = I;(z) = I(S; < z+/7), where I(-) is the standard indicator function of event.
Starting with general ideas of the law of large numbers and the relation El, — &(z),
one could suppose that

3 1 =
;JZ_;IJ(I) — ®(z) as.
This hypothesis appears to be wrong, the variance of sum of underlying indicators in-
creases too fast. In 1988 Brosambler [3] and Schatte [6] discovered independently that
a replacement of the averaging procedure can improve situation. They proved that for
zER ik
1 1
@; ;Ij(z) 5. 2(%) p0iS, (2)
if E|X[2*4 < oo for some § > 0 (6 = 1 in Schatte’s paper). Their result was strengthened
later to § = 0 by Fisher and independently by Lacey and Philipp (see further references
in Berkes [2]). It is well known that a sequence of distribution functions which con-
verges weakly to a continuous distribution function converges to it uniformly. Hence,
the relation (2) holds with probability 1 uniformly in rational z € R and therefore in
all z € R. At presence, there is a great variety of papers investigating the a.s. CLT (2).
A.s. limit theorems with other limit distributions are also extensively studied. Many of
these papers can be found in Berkes [2] and his careful survey includes the non-i.i.d. case,
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“ocal theorems, weakly dependent random variables, multidimensional case, more gen-
=ral classes of functions instead of indicators, large deviations, more general summation
methods, rate of convergence in (2), etc.

It is clear that the rate of convergence in (2) can not be less than the weight of I (z)
= the logarithmic sum in (2). It means that the rate is O(logn) at best. In fact, it is
=ven worse [2]:

n
lim sup(log 7 log log n) ~1/2 Z (%Ij(z) — EIj(z)) =0 -as,
=1
where

o?=2 /Ow/_; /:;(¢(u, ,8) — ¢(w)¢(v)) du dv ds,

2(u,v, ) is the bivariate normal density with mean 0 and covariance exp{—|s|/2}.

The as. CLT based on weighted sums b5 7, a;1;(z) with b, = PE- asly Zico
=ave been investigated by several authors (see again [2] for details). In fact, the a.s.
CLT holds for a class of methods which are similar to the logarithmic one (for example,
= = (log5)°/j, j > 2, with s > —1 are quite acceptable). A simple calculation shows for
“he last example that the best rate of convergence in the a.s. CLT appears when s = 0.
A different version of the a.s. CLT was also suggested by Schatte and Brosamler. They

oroved that

Ligs i/2

n;z(sz, <229/?) 5 3(z) as.
“r distributions with finite moment of order 2 + 6. The rate of convergence in this
selation is at most the weight of the first indicator. Taking into account the fact that
“he sum on the left side involves 2" elements of X;, Xa, ..., we conclude that this rate
of convergence is again logarithmic.

The main purpose of this paper is to suggest a version of the a.s. CLT with a power
zate of convergence. We also prove that the rate of convergence in (2) remains at most
“ogarithmic even if we replace the logarithmic averages by arbitrary functions of the same
‘adicators.

2. RESULTS AND PROOFS
We recall that X, are independent and identically distributed random variables with
=ero mean and variance 1 throughout this paper.
Theorem 1. Assume that H,:{0,1}" — R is a sequence of functions, and with proba-
b Blity 1
' bn(Ha(f1 (), ., In(2)) — 8(z)) = 0 ()
=niformly in x € R where by, is a sequence of constants. Then b, = o(lognloglogn).
We shall prove a slightly stronger result: theorem 1 remains true if we replace (3)
mniformly in z € R) by
sup P(|bn(Hn — ®(z))| >€) = 0 for all € > 0, (4)
where the supremum is taken over z € A, = ((21ln)!/2,2(lln)/2), lin = loglog(n V 16),
o= Ho(Ii(2), ..., In(2)).
Froof. Assume now that (4) holds. Set J,, = I1(z) - I,(z). We have
sup P(|bn(Hn — ®(z))| >€,J,=1) =0 foralle >0,
z€EA,

and since H,, = Hy(1,...,1) on the event {J, = 1},
sup P(Jp = 1)I(|bn(Hn(1,...,1) — ®(z))| >€) » 0 foralle > 0. (5)
z€An
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Now we need a version of the Darling-Erdés theorem which is due to Einmahl [4]:
P (an lréljasxn S;/Bj — Bn < y) — exp (—e”‘2\/1_r)

uniformly in y € R, where an = (21n)/2, Bn = 21ln +3 loglin,

B2 = 3" EXAI (X] < VA/(n)?)

n=1

Evidently B, < v/n and Bn ~ /. Put © = fn/on. Then
v B 27
P (l‘é‘?g‘nsf/\/; = z> >P (lréx]_a%cnSJ/B] < z) e

and therefore the indicators I (-) in (5) equal zero for all sufficiently large n and such .
Hence bp(Hn (L, ---,1)—2(@)) = 0 and the same is true with #’ = z+1/z instead of z. We
have by (®(z)—2(")) — 0. Note that 1—&(z) ~ e~ (1-8(z")) ~ 1/(2y/7 lognloglogn). -
and so that the conclusion obtains. O

Theorem 1 illustrates the slow rate of convergence in any variant of the a.s. CLT based
on indicators I, ..., In. TO construct a variant with a power rate of convergence, we need
first to replace this system of indicators by a different one.

Put l, = [/nlogn] and kx = [y/n/Togn], where [z] denotes the integer part of .
Further, set In; = I, j(z) = I(Sjk, — SG-1)kn < zvE,) for 1 < j < ln. Here Sp = 0-
For each n > 1, such defined indicators are independent.

Theorem 2. Assume that E |X|® < 0. Then for any sequence of constants Tn

lim sup n/*(log n)~*/*

L
1 &
= ]2:1 Inj(zn) — (zn)| <00 @5

Comparing this result with (1) one finds here a power but worse rate of convergence.
The deviation of random variable l; 3 Z;":I I,j(z) from &(x) appears here as a sum of
two quantities. One of them is the deviation of this random variable from its mean, i.€..
from P(Sk, < zv/kn ). It can be estimated with the help of the Borel-Cantelli lemma
and some résults of the theory of large deviations. To get better rate on this step, we
need faster increasing ln. On the other hand, we need faster increasing kn to make
P(Sk, < zv/kn) closer to &(z) (with the help of (1)). Note that lnkn < 78O far as we
involve only first n elements of sequence {X,} in our construction. Our choice of kx
and I, seems to be optimal for the proof below.

Proof. We start with recalling of Hoeffding’s inequality which can be found for example
in Petrov [5, p. 78]: if Y1,--- ,Y,, are independent random variables, 0 < Y; < 1, then for
any y >0,

n
P(Z(Yj - EY;) > ny) < exp (—2ny") -
j=1
Applying it to indicators In1, - »Inin> W€ conclude that
P (|Ta(en) ~ ETalan)| > n~1/4(10gn)/*) < 2exp(~2logn) =n~,
where Tn(z) = 17! Z?‘:‘ I, j(z). Hence the probabilities on the left form a convergent
series. By the Borel-Cantelli lemma with probability 1 the inequalities |
|Tn(z) — ETa(@)| £ n~Y4(logn)*/*
hold for all n > n,,. Together with the estimate
[ETa(z) — ®()| <E |X [Pn="/4(og )/
which follows immediately from (1), this concludes the proof. O
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Our final result estimates the best possible convergence rate in variants of the a.s.
CLT based on indicators Iy ;.
Theorem 3. Assume that
P(X >n) = o ((logn)(c+1)/2 /n2+°) . lognEX2I(|X| > n) —0 (6)
for some ¢ > 0. For integer 1 < k, < n put ln = [n/kys], and for 1 < j < I, define
5(@) = I(Sjk, = S(j-1)k, < v/Fn) as before. Let H,: {0, 1}* — R be a sequence of
Junctions, and with probability 1

bn(Hn(In1 (2), .. In, () — B(2)) — 0 W]
sniformly in z € R, where b, is a sequence of constants. If I, — oo and
17/ logln = O (kS (®)

then b, = o(l,).

As in case of Theorem 1 we shall prove a stronger result: theorem 3 remains true if

we replace (7) (uniformly in = € R) by
Sup P (|bn (Hp (o1 (), - . - 1 In. () — 8(z))| >€) = 0 foralle >0, 9)

where the supremum is taken over & € [(2logly, — loglogln)Y/2, (log I)E/2)8

Proof. We shall use a result on moderate deviations due to Amosova [1]: if (6) holds
then P(Sp > zy/n) ~ 1 — &(z) uniformly in z, 0 < z < (clogn)}/2. Setting z =

2logl,—loglogl,~A)'/2 and noting that z < (clog k,)!/2 and (8) holds if the constant A
s sufficiently large we conclude

P (s,cﬂ > k,.) ~1=8(2) ~ et (2y/7l) "
Therefore
3
Blny (@)=t sdnii=1)=P (Sk,, < z\/k") — exp (—eA(Z\/;r)‘l) 4

Using a similar argument as in the proof of Theorem 1, it follows by, (1 — &(z)) — 0, and
we obtain the assertion.

Going back to I, = [v/nlogn] and k, = [/n/ logn] from Theorem 2 we see that (8)
=olds with ¢ > 2 and in turn b, = o(\/nlogn) if the condition (6) is satisfied with ¢ > 2.
Note that the moment condition E |X| < co with some ¢ > 2 + ¢ implies (6).

A careful reading proofs of Theorems 1 and 3 shows that we can assume (4) and (9)
caly for two increasing sequences = z,, in each theorem or even for one sequence in
=ach theorem if we assume additionally Hy(1,..., 1)=1forn>1.
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