
Òåîðiÿ éìîâiðíîñòåé Teoriya �Imovirnoste��
òà ìàòåìàòè÷íà ñòàòèñòèêà ta Matematychna Statystyka
Âèï. 1(98)/2018, ñ. 8�28 No. 1(98)/2018, pp. 8�28

UDC 519.21

FRACTIONAL STOKES–BOUSSINESQ–LANGEVIN EQUATION

AND MITTAG-LEFFLER CORRELATION DECAY

V. V. ANH, N. N. LEONENKO

This contribution is dedicated to the 85th anniversary of Professor Mykhailo Iosipovych Yadrenko

Abstract. This paper presents some stationary processes which are solutions of the fractional Stokes–

Boussinesq–Langevin equation. These processes have reflection positivity and their correlation func-
tions, which may exhibit the Alder–Wainwright effect or long-range dependence, are expressed in terms

of the Mittag-Leffler functions. These properties are established rigorously via the theory of KMO–

Langevin equation and a combination of Mittag-Leffler functions and fractional derivatives. A rela-
tionship to fractional Riesz–Bessel motion is also investigated. This relationship permits to study the

effects of long-range dependence and second-order intermittency simultaneously.
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1. Introduction

In a computer experiment of molecular dynamics, Alder and Wainwright [2, 3] found
the tail behavior t−3/2 as t→∞ for the autocorrelation function of a stationary process of
non-Markovian type. This behavior is known as the Alder–Wainwright effect. The usual
Langevin equation for the velocity ξ(t) of a Brownian particle of mass m at position x(t)
in a fluid, which neglects the effect of the fluid flow around the particle, is not adequate to
capture this behavior. Taking into account the hydrodynamic drag force, which is due to
the acceleration of the particle, the Langevin equation becomes the Stokes–Boussinesq–
Langevin equation:

dξ(t)

dt
= − 1

σ∗
ξ(t)− a

σ∗
√
πν

∫ t

−∞

1√
t− s

dξ(s)

ds
ds +

1

m∗
W (t), (1.1)

where m∗ = m
(

1 + ρ
2ρ0

)
is the effective mass, ρ being the density of the fluid, ρ0 being

the density of the particle, σ∗ = m∗µ is the modified relaxation time, µ is the mobility
coefficient, ν is the kinematic viscosity of the fluid, and W (t) denotes the random force
arising from rapid thermal fluctuations (see Appendix A for the derivation of equation
(1.1)). It was shown in Widom [64], for example, that the autocorrelation function of
the random process ξ(t) defined by equation (1.1) has the tail t−3/2 as t → ∞, which
agrees with the result of the Alder–Wainwright experiment.

Many works on physical models of anomalous diffusion reported a Mittag-Leffler decay
for the autocorrelation function:

ρ(t) = Eα
(
−b|t|α

)
, t ∈ R, 0 < α ≤ 1, b ≥ 0, (1.2)
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where Eα is the one-parameter Mittag-Leffler function (defined in Section 2). This
formula covers a complete range from the exponential decay of Ornstein–Uhlenbeck pro-
cesses to the hyperbolic decay of strongly dependent processes, and includes the Alder–
Wainwright effect. Metzler et al. [44] introduced a fractional Fokker–Planck equation
using fractional derivatives to describe subdiffusive behavior of a system close to thermal
equilibrium. Based on this equation, they showed that the mean square displacement of a
particle has a Mittag-Leffler decay as t→∞, hence implying the long-range dependence
(LRD) for its velocity. Metzler and Klafter [43] and Barkai and Silbey [9] investigated a
fractional Klein–Kramers equation, from which the fractional Fokker–Planck equation is
deduced, and again established the Mittag-Leffler relaxation.

Lutz [40] described another pathway to anomalous diffusion using random matrix
theory. This approach considers a system coupled to a fractal heat bath with a random-
matrix interaction. In the limit of weak coupling, the following fractional Langevin
equation is obtained:

mẍ(t) + m

∫ t

0

γ(t− s)ẋ(s)ds = W (t), (1.3)

where W (t) is a Gaussian random force with mean zero and covariance function

RW (t) = E(W (t)W (0)) ∼ 2A0Γ(α) cos
(απ

2

)
t−α, 0 < α < 2,

in the limit of large bandwidth, A0 being the strength of the coupling, and γ(t) is
a response kernel that obeys the second fluctuation–dissipation theorem mκTγ(t) =
RW (t), κ ≡ Boltzmann constant, T ≡ absolute temperature (Kubo [36]). Using this
equation, the Mittag-Leffler decay of the autocorrelation function is obtained. Kou and
Xie [35] and Min et al. [46] used the fractional Langevin equation (1.3) to investigate
subdiffusion (0 < α < 1) within a single protein molecule. Fa [25], Lim and Teo [39],
Eab and Lim [23] extended the fractional Langevin equation (1.3) to the case where the
response kernel γ(t) is given in terms of a Mittag-Leffler function and the time derivative
of ẋ(t) is replaced by a Caputo fractional time derivative. The resulting equation is called
a fractional generalized Langevin equation (FGLE). Camargo et al. [12] considered a two-
parameter Mittag-Leffler function in the response kernel γ(t) for the FGLE, while Sandev
et al. [58, 59] considered a three-parameter Mittag-Leffler function for γ(t). The paper
[59] provides a review of works in this direction. It should be noted that these works
used the fluctuation–dissipation theorem and followed the Laplace transform method
applied to the FGLE, which is a random equation, to obtain a formal expression for the
displacement x(t).

From a different angle, Okabe [50, 51] introduced and gave a rigorous treatment of
the linear stochastic delay equation

Ẋ(t) = −βX(t)−
∫ t

0

γ(t− s)Ẋ(s)ds + αI(t), (1.4)

in which the solution X(t) is defined as a random tempered distribution, and Ẋ(t) is its
derivative. Here, α and β are positive numbers, the delay kernel γ : (0,∞)→ [0,∞) has
the representation

γ(t) =

∫ ∞

0

e−tλρ(dλ), t > 0, (1.5)

ρ being a Borel measure on (0,∞) such that
∫ ∞

0

(
λ−1 + λ

)
ρ(dλ) <∞,
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and I(t) is a stationary Gaussian random tempered distribution associated with X(t),
called the Kubo noise of the process X(t) (this concept comes from Kubo’s linear re-
sponse theory detailed in Kubo [36], Kubo et al. [37]). The Kubo noise I(t) is needed
for a fluctuation–dissipation theorem to hold. Equation (1.4) has a physical meaning
by considering X(t) to be the x-component of the velocity of a particle as described
in Appendix A. A key feature of equation (1.4) is that it describes the time evolution
of a stationary Gaussian process with reflection positivity (defined in the next section);
this concept arises from an axiom of the quantum field theory. Under the conditions on
the measure ρ(dλ), the diffusion coefficient D =

∫∞
0 RX(t)dt is finite for equation (1.4).

Inoue [33] extended Okabe’s work by considering the case D = ∞. In this latter work,
equation (1.4) is also established, but with β = 0. A key result obtained is that the solu-
tion of equation (1.4) (with β = 0) possesses both long-range dependence and reflection
positivity. A causality condition (defined in (2.18) of Section 2) is needed for uniqueness
of the solution.

In Section 2, we apply the theory of Okabe [50, 51] and Inoue [33] to a fractional
generalization of the Stokes–Boussinesq–Langevin equation:

Ẋ(t) = −λX(t)− bD1−αX(t) + W (t), t ∈ R, λ ≥ 0, b ≥ 0, (1.6)

where the fractional derivative D1−α, 0 ≤ α ≤ 1, is defined in (2.15) below, and W (t) is
Kubo noise with a certain spectral density. In this application, the delay kernel γ(t) of
(1.5) takes the specific form of the fractional derivative D1−α and the Kubo noise has
two specifications in Theorems 2.1 and 2.2 respectively. In Theorem 2.1 we confirm ana-
lytically the Mittag-Leffler decay in the autocorrelation function of the solution process,
while in Theorem 2.2, for α = 1/2 the asymptotic behaviour of the correlation function
is ρX(t) = O

(
t−3/2

)
, t → ∞, which is the Alder–Wainwright effect. A new aspect of

Theorems 2.1 and 2.2 is that the results are given in an explicit form using the Mittag-
Leffler functions, rather than asymptotic results as given in Inoue [33]. These exact
results highlight the important role played by a combination of Mittag-Leffler functions
and fractional derivatives, which takes advantage of the availability of nice formulae of
the Laplace transform in terms of Mittag-Leffler functions.

In Section 3, we consider the fractional Stokes–Boussinesq–Langevin equation (1.6) in

the context of fractional Gaussian noise ḂH(t). Equation (1.6) will then take the form

Ẋ(t) = −λX(t)− bD1−2HX(t) + ḂH(t), t ∈ R, λ ≥ 0, b ≥ 0. (1.7)

We will look at two cases of interest: λ = 0 and then b = 0 separately. For λ = 0 in (1.7),
existence and uniqueness of a stationary solution for (1.7) with long-range dependence
is confirmed for 0 < H < 1/2. For the case 1/2 < H < 1, we will consider equation (1.7)
with b = 0 in the Itô approach. The corresponding equation is the Ornstein–Uhlenbeck
equation driven by fractional Brownian motion BH(t), 1/2 < H < 1. Existence and
uniqueness of a stationary solution with long-range dependence is also obtained, as well
as an explicit form for its spectral density.

In the approach of Okabe [50, 51] and Inoue [33], the noise term (Kubo noise) is associ-
ated with the underlying process via its spectral decomposition. If we are able to obtain
long-range dependence or the Alder–Wainwright effect in the solution of the fractional
Stokes–Boussinesq–Langevin equation under the scenario of system-independent noise,
we may use the noise term to represent other effects such as intermittency (see Frisch
[27] for example). There may also be more flexibility in defining the response function
γ(t). We demonstrate these possibilities in Section 4, where a stationary process related
to fractional Riesz–Bessel motion (Anh et al. [5, 7]) is derived. This permits to study the
effects of long-range dependence and second-order intermittency simultaneously. These
effects are known to be important features of data in geophysics, turbulence and finance.
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2. Stationary processes governed by the fractional
Stokes–Boussinesq–Langevin equation

2.1. Reflection positivity. Let X = {X(t), t ∈ R} be a real-valued, measurable, mean-
square continuous, stationary (in the wide sense) random process with mean
EX(t) = const, covariance function RX(t) = Cov(X(t), X(0)), t ∈ R, and spectral
density fX(ω), ω ∈ R, that is,

RX(t− s) =

∫

R
cos{ω(t− s)}fX(ω)dω. (2.1)

The concept of reflection positivity arises in the axiomatic quantum field theory (Os-
terwalder and Schrader [53], Nelson [49], Hegerfeldt [30], Glimm and Jaffe [28, p. 90–92]).
Following Osterwalder and Schrader [53], we say that the process X has reflection posi-
tivity if its covariance function (2.1) satisfies

n∑
j,k=1

zjRX(tj + tk)z̄k ≥ 0, tj ∈ [0,∞), j = 1, . . . , n,

for any n ≥ 1, zj ∈ C, j = 1, . . . , n. Hida and Streit [31] showed that a Gaussian process
X has reflection positivity if and only if there exists uniquely a bounded non-negative
Borel measure σ on [0,∞) such that

RX(t)

RX(0)
= ρX(t) = σ({0}) +

∫

(0,∞)

ρλ(t)σ(dλ), (2.2)

where

ρλ(t) = e−|t|λ, t ∈ R, λ > 0, (2.3)

is the correlation function of the stationary Gaussian Ornstein–Uhlenbeck (OU) process
ξ(t) defined by the equation

dξ(t) = −λξ(t) dt + γ dB(t), t ∈ R, λ > 0, γ > 0. (2.4)

Here, B = {B(t), t ∈ R} is a one-dimensional Brownian motion or Wiener process such
that

EB(t) = 0, VarB(t) = |t|. (2.5)

The stationary Gaussian solution of (2.4) has the following covariance function and spec-
tral density:

Rξ(t) =
γ2

2λ
e−λ|t|, t ∈ R; fξ(ω) =

A

ω2 + λ2
, A =

γ2

2π
, ω ∈ R. (2.6)

By Bernstein’s theorem (see Feller [26, p. 426]) we obtain that the condition (2.2) is
equivalent to the complete monotonicity of the function ρX(t) on (0,∞), that is,

(−1)k
dk

dtk
ρX(t) ≥ 0, t > 0, k = 0, 1, 2, . . . (2.7)

The following functions on (0,∞) are known to be completely monotone:

exp{−ctγ}, c > 0, 0 < γ ≤ 1;(
2v−1Γ(ν)

)−1(
c
√
t
)ν

Kν
(
c
√
t
)
, c > 0, ν > 0;

(1 + ctγ)
ν
, c > 0, 0 < γ ≤ 1, ν > 0;

2ν
(
ec
√
t + e−c

√
t
)−ν

, c > 0, ν > 0;

Eα,β(−t), (0 < α < 1,β = 1) or (0 < α ≤ 1,β ≥ α);

Eα,1(−tγ), 0 < α < 1, 0 < γ < 1.
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In this list, Kν is the modified Bessel function and Eα,β(−x), x > 0 is the Mittag-Leffler
function of the negative real argument (see formula (2.32) below).

If we assume that

σ({0}) = 0, 0 < σ([0,∞)) <∞,

∫ ∞

0

λ2 σ(dλ) <∞,

then the spectral density fX(ω) is given by

fX(ω) =
1

π

∫ ∞

0

λ

ω2 + λ2
σ(dλ), ω ∈ R− {0}, (2.8)

and

fX(ω) ∈ L1(R).

Example 2.1. If we define the Borel measure σ on (0,∞) according to the gamma distri-
bution:

σ(dλ) = λα−1e−λ
/

Γ(α), α > 0, (2.9)

then from (2.2) we obtain

RX(t) =
1

(1 + |t|)α
, t ∈ R, (2.10)

and the corresponding spectral density function is given by

fX(ω) =
1

π
Im

∫ ∞

0

e−yω dy(
1 + e−iπ/2y

)α , ω > 0, (2.11)

which is also known as the probability density of the generalized Linnik distribution
(Erdogǎn and Ostrovskii [24]). Analytic and asymptotic properties of the function (2.11)
has been studied by Erdogǎn and Ostrovskii [24]. In particular, for 0 < α < 1, ω ↓ 0,

fX(ω) =
1

2Γ(α) cos
{
απ
2

} 1

|ω|1−α
(
1− θ(ω)

)
, θ(ω)→ 0, (2.12)

while for α = 1, ω ↓ 0,

fX(ω) =
1

π
log

1

|ω|
− γ
π

+
1

2
|ω|2 log

1

|ω|
+ O

(
ω2
)
,

where γ = Γ′(1) is Euler constant. Thus, for α ∈ (0, 1] the process X with covariance
function (2.10) and spectral density (2.11) displays long-range dependence.

2.2. Fractional Stokes–Boussinesq–Langevin equation. Let us recall some defini-
tions of fractional derivatives (see Caputo [13], Caputo and Mainardi [14], Miller and
Ross [45], Samko et al. [56], Djrbashian [17], Podlubny [55] among others).

Under certain natural conditions on the real-valued function f(t), the Caputo frac-
tional derivative of order β ∈ [n− 1, n), n = 1, 2, . . . , is defined as

aDβCf(t) =
1

Γ(n− β)

∫ t

a

(dn/dτn)f(τ)

(t− τ)β+1−n dτ, (2.13)

while the Riemann–Liouville fractional derivative of order β ∈ [n− 1, n), n = 1, 2, . . . , is
defined as

aDβRLf(t) =
1

Γ(n− β)

dn

dtn

∫ t

a

f(τ)

(t− τ)β+1−n dτ. (2.14)

The main advantage of Caputo’s definition is that the fractional derivative of a constant

C is equal to zero: 0DβCC = 0, while in the Riemann–Liouville definition we have

0DβRLC = Ct−β
/

Γ(1− β), 0 ≤ β < 1.
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Putting a = −∞ in both definitions (2.13) and (2.14) and requiring reasonable behavior
of f(t) and its derivatives for t→ −∞, we arrive at the same formula

Dβf(t) = −∞DβCf(t) = −∞DβRLf(t) =
1

Γ(n− β)

∫ t

−∞

(dn/dτn)f(τ)

(t− τ)β+1−n dτ, (2.15)

where n − 1 ≤ β < n, n = 1, 2, . . . The fractional derivative (2.14) is also called Weyl’s
fractional derivative (see Samko et al. [56, p. 356]).

In order to obtain exact formulae for equation (1.6) instead of asymptotic expressions,
we will widely use the one-parameter and two-parameter Mittag-Leffler functions (see,
for example, Djrbashian [17]). In particular, the entire function of order 1/α of type 1

Eα(z) =

∞∑
j=0

zj

Γ(αj + 1)
, z ∈ C, α > 0,

is known as the one-parameter Mittag-Leffler function. For real x ≥ 0 the function

Eα(−x) =
∞∑
j=0

(−1)jxj

Γ(αj + 1)
, x ≥ 0, 0 < α ≤ 1, (2.16)

is infinitely differentiable and completely monotone. It follows from the definition that

E1(−x) = e−x, E1/2(−x) = ex
2

(
1− 2√

π

∫ x

0

e−t
2

dt

)
, x ≥ 0.

From Djrbashian [17, p. 5], we obtain the following asymptotic formula:

Eα(−x) = −
N∑

k=1

(−1)kx−k

Γ(1− αk)
+ O

(
|x|−N−1

)
, 0 < α < 1, (2.17)

as x→∞.
The next theorem is concerned with the fractional Stokes–Boussinesq–Langevin equa-

tion (1.6) for the case λ = 0. The uniqueness of its stationary solution is obtained under
the causality condition

Σt(X) = Σt(W ) (2.18)

for any t ∈ R, where Σt(Y ) denotes the closed linear hull of{
Y (φ), φ ∈ D(R), supp{φ} ⊂ (−∞, t]

}
in L2(Ω,F ,P), (Ω,F ,P) being the underlying complete probability space and D(R) being
the space of all φ ∈ C∞(R) with compact support (see Appendix B for further details).
It should be noted that equation (1.6) is not an Itô stochastic differential equation in
general because the fractional operator (2.15) is not local. For λ ≥ 0, b > 0, equation
(1.6) is a particular case of the second KMO–Langevin equation (Okabe [51], Inoue [33]).

Theorem 2.1. There exists a unique stationary solution X (in the sense of random
distributions) of the fractional Stokes–Boussinesq–Langevin equation (1.6) with λ = 0
and spectral density of the Kubo noise of the form

fW (ω) = γb

√
2

π
cos

{
(1− α)π

2

}
|ω|1−α, 0 < α < 1, γ > 0, b > 0, (2.19)

under the causality condition (2.18). The solution X is a purely nondeterministic zero-
mean stationary Gaussian process having the following properties:

RX(0) = γ
√

2π ; (2.20)

ρX(t) = RX(t)/RX(0) = Eα(−b|t|α), t ∈ R, 0 < α < 1; (2.21)
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for α ∈ (0, 1) and large t > 0

ρX(t) =
1

|t|αbΓ(1− α)
+ O

(
1

|t|2α

)
; (2.22)

for α ∈ (0, 1), X has reflection positivity, that is, (2.2) holds with

σ(dλ) =
sin{πα}
π

λα−1

1 + 2 cos{απ}λα + λ2α
dλ; (2.23)

its spectral density is

fX(ω) =
sin{πω}
π2

∫ ∞

0

uα du

(ω2 + u2)(1 + 2 cos{απ}uα + u2α)
, ω > 0, 0 < α < 1; (2.24)

the correlation function (2.21) is the unique solution of the Cauchy problem for the
fractional differential equation

0DαCρX(t) + bρX(t) = 0, b > 0, ρX(0) = 1; (2.25)

the process X has the time-domain representation as a random distribution:

X(t) = lim
M→∞

1(0,M)Eα(−b | · |α) ∗W (t) =

=

∫ t

−∞
Eα(−b|t− s|α)W (s) ds, 0 < α < 1. (2.26)

Proof. The existence and uniqueness of the stationary solution of equation (1.6) with
λ = 0 follows from Theorems 1.1 and 1.2 of Inoue [33]. The expression (2.19) of the Kubo
noise is given in Example 5.11 of Inoue [33]. The result (2.20) is part of Theorem 5.10
of Inoue [33]. Moreover, from (ii) of Theorem 1.2 of Inoue [33] we obtain

∫ ∞

0

eiζt
(
RX(t)/RX(0)

)
dt =

(
−iζ− iζ

∫ ∞

0

eiζtγ(t) dt

)−1
,

Im ζ > 0, which, with

γ(t) = btα−1
/

Γ(α), 0 < α < 1, (2.27)

and ζ = ip, reduces to the following equation:
∫ ∞

0

e−ptρX(t) dt =
1

p + bp1−α
, p > 0. (2.28)

It is known (see, for example, Samko et al. [56, p. 21]) that the Laplace transform of the
Mittag-Leffler function (2.21) is

∫ ∞

0

e−ptEα(−b|t|α)dt =
pα−1

pα + b
, Re p > |b|1/α, (2.29)

0 < α < 1. Thus, (2.21) follows from (2.27) and (2.28). The formula (2.22) then follows
from (2.17), and (2.23) is a particular case of Theorems 1.3–1.5 of Djrbashian [17]. The
formula (2.24) follows from (2.8) and (2.23). The fractional differential equation (2.25)
is solved by (2.21) in Djrbashian and Nersesian [18], which uses the same definition
of fractional derivatives as Caputo’s. The representation (2.26) is a particular case of
Theorem 1.2 of Inoue [33], while (2.19) follows from (5.17) of Inoue [33] with appropriate
choice of γ(t) according to (2.27). �

Remark 2.1. If α = 1, the corresponding equation is (2.4) and the covariance function of
its stationary solution is given by (2.6). The correlation function (2.21) formally reduces
to (2.6) (up to constants) in this case. For α ∈ (0, 1) the process X given in Theorem 2.1
displays LRD, that is,

∫ ∞

0

ρX(τ) dτ =∞. (2.30)
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The exact formula (2.21) in terms of the Mittag-Leffler function thus gives a complete
interpolation between the exponential covariance function of OU processes and the hy-
perbolic covariance function of LRD processes. The representation (2.26) of the process
itself also interpolates the moving-average representations of OU processes and LRD
processes.

In what follows we need the two-parameter Mittag-Leffler function (see again Djr-
bashian [17, p. 1–6]), which can be defined by the series expansion

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0, z ∈ C. (2.31)

It is clear that Eα,1(z) = Eα(z), and E1,1(z) = ez, E2,1(z) = cosh
√
z, E2,2(z) =

= (sinh
√
z )/
√
z, E1,2(z) = (ez − 1)/z, E1,3(z) = (ez − 1− z)/z2. If α < 1, β ≥ α the

function

Eα,β(−u) =

∞∑
k=0

(−1)kuk

Γ(αk + β)
, u ≥ 0, (2.32)

is completely monotone, that is,

Eα,β(−u) =

∫ ∞

0

e−uτqα,β(τ) dτ, (2.33)

where

qα,β(τ) = − 1

π

∞∑
k=0

(−1)k

k!
Γ
(
1− β+ α(k + 1)

)
sin
{
π(α(k + 1)− β)

}
τk ≥ 0.

Theorem 2.2. There exists a unique stationary solution X (in the sense of distributions)
of the fractional Stokes–Boussinesq–Langevin equation (1.6) with λ > 0, b > 0 and the
spectral density of the Kubo noise of the form

fW (ω) = γ

√
2

π

(
λ+ b

∫ ∞

0

ω2

u2 +ω2

du

uα

)
, ω ∈ R− {0}, 0 < α < 1. (2.34)

The solution X is a stationary Gaussian process with reflection positivity and correlation
function of the form

ρX(t) = RX(t)/RX(0) =

∞∑
k=0

(−1)k

k!
(λt)kE

(k)
α,1+k−ακ(−btα), (2.35)

where E
(0)
α,β(x) = Eα,β(x) is defined by (2.32) and

E
(k)
α,β(x) =

dk

dxk
Eα,β(x) =

∞∑
j=0

xj(j + k)!

j!Γ(αj + αk + β)
, k = 1, 2, . . . (2.36)

Proof. The existence and uniqueness of a stationary solution of (1.6) with λ > 0, b > 0
is given in Okabe [51]. The causality condition (2.18) follows in this solution. The
expression (2.34) is the spectral density for Kubo noise of model (6.6) of Inoue [33]
corresponding to the response function γ(t) of (2.27). With this choice of γ(t), we obtain
from (6.1) of Inoue [33] that

∫ ∞

0

e−ptρX(t) dt =
(
λ+ p + bp1−α

)−1
, p > 0. (2.37)

From Djrbashian [17], Podlubny [55], we can obtain the following expression for the
Laplace transform of the function (2.36):
∫ ∞

0

e−pttαk+β−1E
(k)
α,β(±btα)dt =

k!pα−β

(pα ∓ b)
k+1

, Re p > |b|1/α, k = 0, 1, . . . , (2.38)
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and for 0 < α < 1 the function (2.37) can be written as

1

λ

λpα−1

p1−α + b

[
1 +

λpα−1

p1−α + b

]
=

1

λ

∞∑
k=0

(−1)kλk+1pα−1+k(α−1)/(p1−α + b
)k+1

. (2.39)

Term-by-term inversion of (2.39) based on the general expansion theorem for the Laplace
transform using (2.38) produces (2.35). �

Remark 2.2. Putting b = 0 formally in (2.35) we obtain

ρX(t) =

∞∑
k=0

(−1)k

k!
(λt)k = e−λt, t ≥ 0,

which is the correlation function (2.3) of the OU process (2.4). Moreover, putting λ = 0
formally in (2.35) with b > 0 we obtain

ρX(t) = Eα,1(−btα), t ≥ 0,

which coincides with the correlation function (2.21) of the stationary solution to (1.6)
with λ = 0, α ∈ (0, 1].

Remark 2.3. The correlation function (2.35) is the inverse Laplace transform of the
function

gα(p) =
1

λ+ p + bp1−α
, p > 0, 0 < α < 1.

The behaviour of gα(p) as p → 0 is c
(
1−O

(
p1−α

))
, c being a constant. This yields,

via Watson’s lemma, the behaviour ρX(t) = O
(
t2−α

)
as t → ∞. Thus, for α = 1/2 the

asymptotic behaviour of the correlation function is ρX(t) = O
(
t−3/2

)
, t → ∞, which is

the Alder–Wainwright effect; but the exact expression (2.35) for the correlation function
is more informative.

3. Fractional Stokes–Boussinesq–Langevin equation driven by fractional
Gaussian noise

3.1. Fractional Stokes–Boussinesq–Langevin equation. Fractional Brownian mo-
tion (FBM), BH = {BH(t), t ∈ R}, with Hurst parameter H ∈ (0, 1), is a Gaussian,
mean-zero and H-self-similar process with BH(0) = 0 and stationary increments. By

H-self-similarity we mean that, for a > 0, {BH(at), t ∈ R} d
= {aHBH(t), t ∈ R}, where

d
= stands for equality in finite-dimensional distributions. The FBM BH with H = 1

2 is
the usual Brownian motion B = {B(t), t ∈ R}.

Samorodnitsky and Taqqu [57] provided an introduction to FBM. For a detailed
treatment of FBM we refer to Mishura [47]. We note that the covariance function of
FBM is

Cov
(
BH(t), BH(s)

)
=

c

2
{|t|2H + |s|2H − |t− s|2H}, t, s ∈ R, (3.1)

where c = VarBH(1), while the covariance function of an increment of FBM is given by

Cov
(
BH(t + h)−BH(h), BH(t + s + h)−BH(s + h)

)
=

= Cov
(
BH(t), BH(t + s)−BH(s)

)
=

= c

∞∑
n=1

t2n

(2n)!

(
2n−1∏
k=0

(2H − k)

)
s2H−2n =

= c

N∑
n=1

t2n

(2n)!

(
2n−1∏
k=0

(2H − k)

)
s2H−2n + O

(
s2H−2N−2

)
, s→∞,
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for every N ∈ {1, 2, . . .} and all 0 < t < s, h ∈ R. If we denote

RH(n) = Cov
(
BH(t), BH((n + 1)t)−BH(nt)

)
,

then, for H ∈
(
0, 1

2

)
,
∑∞

n=−∞RH(n) = 0 (negative correlation property) and, for

H ∈
(
1
2 , 1
)
,
∑∞

n=−∞ |RH(n)| =∞ (long-range dependence).
FBM admits a time-domain representation in the form of Itô stochastic integral with

respect to standard Brownian motion B(t):

BH(t) =
1

Γ(H + 1
2 )

∫

R

[
g
H

(t− s)− g
H

(−s)
]
dB(s), t ∈ R,

where g
H

(s) = sH−
1
2 1(0,∞)(s). We consider the spectral representation

B(t) =

∫

R

e−itω − 1

−iω
Z(dω),

where Z(dω) is a complex Gaussian random measure with

E|Z(dω)|2 = σ2 dω.

Then the spectral representation of FBM is

BH(t) =

∫

R

e−itω − 1

−iω
1

(−iω)H−
1
2

Z(dω), (3.2)

from which we get a formal representation of the derivative process, which exists only in
the sense of random distributions:

d

dt
BH(t) = ḂH(t) =

∫

R
e−itω(−iω)

1
2−HZ(dω), (3.3)

where
(−iω)

1
2−H = lim

η↓0
(−iζ) 1

2−H , ζ = ω+ iη

and we choose the branch of (−iζ) 1
2−H such that (−iζ) 1

2−H
∣∣∣
ζ=i

= 1. The above formulae

show that we can consider the fractional noise ḂH = {ḂH(t), t ∈ R} as a random
distribution with spectral density

σ2|ω|1−2H , H ∈ (0, 1). (3.4)

Remark 3.1. The formulae (3.2)–(3.3) correspond to the definition of the outer function
h(ξ) as the boundary value of an analytic function h(ζ) in the upper half-plane Im ζ > 0
(see Appendix C). More often (see, for instance, Samorodnitsky and Taqqu [57] or Igloi
and Terdik [32]) the expressions such as

B(t) =

∫

R

eitω − 1

iω
Z(dω)

are used. These expressions correspond to considering the Hardy functions in the lower
half-plane Im ζ < 0. Thus, to use these latter expressions, we must change the definition
of the outer function (C.1) such that this function becomes analytical in Im ζ < 0.

Remark 3.2. The variance of BH(t) has the spectral representation

VarBH(t) = 4

∫ ∞

0

(1− cosωt)fBH
(ω)dω,

where, in view of (3.4), fBH
(ω) = σ2|ω|−(2H+1), ω ∈ R, is the spectral density of BH(t).

We have denoted above that VarBH(1) = c; thus the connection between σ2 and c is

σ2 =
c

4
∫∞
0 (1− cosω)|ω|−(2H+1)dω

=
cΓ(2H + 1) sin(πH)

2π
.
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For a nonrandom function f , integration with respect to FBM BH can be based on
formal calculations:

∫

R
f(t) dBH(t) =

∫

R
f(t)ḂH(t) dt =

=

∫

R
e−itω
∫

R
f(t)(−iω)

1
2−HZ(dω) dt =

=

∫

R

{
∫

R
e−itωf(t)dt

}
(−iω)

1
2−HZ(dω).

A precise meaning is given by the following definition.

Definition. Let f ∈ L2(R) be a non-random real-valued function and
∫

R

∣∣∣∣∫
R
e−itωf(t) dt

∣∣∣∣2|ω|1−2Hdω <∞.

Then
∫

R
f(t) dBH(t)

def
=

∫

R

(
∫

R
e−itωf(t)dt

)
(−iω)

1
2−HZ(dω) (3.5)

for H ∈ (0, 1).

Note that because FBM is not a semimartingale, more advanced tools have been
developed to handle integration with respect to FBM in both time and frequency domains
(Igloi and Terdik [32], Alós, Mazet and Nualart [4], Pipiras and Taqqu [54]).

As an application of Theorem 2.1, we consider a fractional Stokes–Boussinesq–Lange-
vin equation in the form

Ẋ(t) = −bD1−2HX(t) + ḂH(t), b ≥ 0, t ∈ R, (3.6)

where the fractional derivative D1−2H , H ∈ (0, 1
2 ] is defined in equation (2.15). Then

RX(0) = b
√

2π (3.7)

and

ρ
X

(t) =
RX(t)

RX(0)
= E2H

(
−b|t|2H

)
, t ∈ R. (3.8)

In view of (2.26) and (3.8), we consider a stationary solution of (3.6) in the form

X(t) =
1

RX(0)

∫ t

−∞
RX(t− s)ḂH(s) ds. (3.9)

We write the spectral representation of the noise ḂH in the form of stochastic integral
with transfer function hḂ :

ḂH(t) =

∫

R
e−itωhḂ(ω)Z(dω). (3.10)

Since equation (3.9) is of convolution type, we obtain by Parseval’s identity and (3.10)
the spectral representation of X(t) as

X(t) =

∫

R
e−itω

(
1

RX(0)

∫ ∞

0

eisωRX(s) ds

)
h

Ḃ
(ω)Z(dω),

that is,

X(t) =

∫

R
e−itωhX(ω)Z(dω), (3.11)

with

h
X

(ω) =
1

RX(0)

(
∫ ∞

0

eisωRX(s)ds

)
h

Ḃ
(ω).
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Then, by Eqs. (3.6), (3.10) and (3.11) we get
∫

R
e−itω

{
−iω+ b(−iω)1−2H

}
h

X
(ω)Z(dω) =

∫

R
e−itωh

Ḃ
(ω)Z(dω),

or [
−iω+ b(−iω)1−2H

]
h

X
(ω) = h

Ḃ
(ω),

which yields ∣∣−iω+ b(−iω)1−2H
∣∣2f

X
(ω) = f

Ḃ
(ω).

The spectral density of X(t) is then given by

f
X

(ω) =
f
Ḃ

(ω)

|−iω+ b(−iω)1−2H |2
.

Using (3.4), we obtain for H ∈ (0, 1
2 ] that

f
X

(ω) =
σ2ω1−2H

ω2 + b2ω2(1−2H) + 2bω2(1−H) sin
(
π
(
1
2 −H

)) , ω ∈ R. (3.12)

3.2. Ornstein–Uhlenbeck equation driven by fractional Brownian motion. We
have seen in the subsection above that the linear response theory with Kubo noise works
for the case 0 < H < 1/2. In this subsection we pay attention to the case 1/2 < H < 1 of
strongly correlated noise. We consider the linear stochastic differential equation driven
by FBM:

dX(t) = −λX(t)dt + dBH(t), λ > 0, t ∈ R. (3.13)

Note that equation (3.13) was discussed by a number of authors including Comte and
Renault [16], Igloi and Terdik [32], Cheridito et al. [15]. One can show that there exists
a unique continuous solution of equation (3.13) in the form

X(t) =

∫ t

−∞
e−λ(t−s) dBH(s) (3.14)

or, in the frequency domain,

X(t) =

∫

R
e−itω

1

−iω+ λ
(−iω)

−H+ 1
2Z(dω), t ∈ R, (3.15)

for a complex Gaussian random measure Z(dω) with

E|Z(dω)|2 = σ2dω.

Thus, the stationary process (3.14) has spectral density

fX(ω) =
σ2

ω2 + λ2
|ω|1−2H , ω ∈ R, (3.16)

and covariance function

RX(t) =
1

2
σ2

N∑
n=1

λ−2n

(
2n−1∏
k=0

(2H − k)

)
t2H−2n + O

(
t2H−2N−2

)
as t → ∞, for any N = 1, 2, . . . and H 6= 1

2 . In particular, for H ∈
(
1
2 , 1
)

the process
(3.14) is stationary and exhibits long-range dependence, that is,

∫

R
RX(s) ds =∞,

while, for H ∈
(
0, 1

2

)
, it has the negative correlation property

∫

R
RX(s) ds = 0.
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We assume for simplicity that σ2 = 1, λ = 1. In the former case, the outer function and
canonical representation kernel can be obtained explicitly (see Inoue and Kasahara [34]).
By applying Exercises 2.3.4 and 2.7.2 of Dym and McKean [21] to the rational functions

1

1− iζ
= exp

{
1

2πi

∫

R

1 +ωζ

ω− ζ
log
(
1 +ω2

)−1
1 +ω2

dω

}
, Im ζ > 0,

−iζ = exp

{
1

2πi

∫

R

1 +ωζ

ω− ζ
logω2

1 +ω2
dω

}
, Im ζ > 0

(noting that both 1
1−iζ and −iζ are positive on the upper imaginary axis), we obtain for

the outer function (C.1) an explicit formula:

h(ζ) =
(−iζ) 1

2−H

1− iζ
, Im ζ > 0. (3.17)

For the function (3.17) we have

h(ζ) =
1√
2π

∫ ∞

0

eiζtE(t) dt (3.18)

with

E(t) =

√
π

Γ
(
H − 1

2

) ∫ t
0

es−tsH−
3
2 ds, t > 0. (3.19)

Thus, the covariance function of the process (3.14) with σ2 = 1, λ = 1 has the remarkable
representation

R(t) =
1

2π

∫ ∞

0

E(|t|+ s)E(s) ds (3.20)

with the function E given by (3.19). To our knowledge, this is the only case where
the canonical representation (C.3) can be written explicitly, unless the process is an
Ornstein–Uhlenbeck process.

4. Stationary processes related to fractional Riesz–Bessel motion

Fractional Riesz–Bessel motion (FRBM) was introduced in Anh et al. [5] and further

investigated in Anh et al. [7]. Its model is governed by the operator −(I −∆)
β
2 (−∆)

γ
2 ,

where ∆ is the Laplace operator, the fractional operators (I−∆)β/2 and (−∆)
γ/2

are the
inverses of the Bessel and Riesz potentials respectively. Formally, a real-valued Gaussian
process X(t) which has (i) X(0) = 0 a. s., (ii) stationary increments, and (iii) spectral
density of the form

fX(ω) =
const

|ω|2γ(1 +ω2)β
, 1/2 < γ < 3/2, β ≥ 0, ω ∈ R,

is called a fractional Riesz–Bessel motion (FRBM). Fractional Brownian motion can
be deduced from fractional Riesz–Bessel motion by putting β = 0, γ = H + 1/2. If
γ ∈ (1, 3/2), the process displays long-range dependence (as |ω| → 0). The sum γ + β
describes clustering of extreme values (as |ω| → ∞) of FRBM (see Anh et al. [6]).

The spectral density of the stationary increments of FRBM has the form

f(ω) =
const

|ω|2δ(1 +ω2)β+1
, ω ∈ R, (4.1)

where δ = γ− 1 ∈ (−1/2, 1/2), β > −1. In this section we introduce a model related to
stationary fractional Riesz–Bessel motion which has spectral density similar to (4.1). This
model is based on the fractional Stokes–Boussinesq–Langevin equation with stationary
random noise.
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Consider again a fractional Stokes–Boussinesq–Langevin equation of the following
form

Ẋ(t) = −λX(t)− bDδX(t) + W (t), t ∈ R, (4.2)

where λ ≥ 0, b ≥ 0, δ ∈ (0, 1) and W (t), t ∈ R, is stationary random noise with
spectral distribution FW (ω) and spectral density fW (ω). The fractional derivative Dδ
is defined in (2.15). As we cannot interpret equation (4.2) in the Itô sense, we will use
the approach proposed by Wong and Hajek [66, pp. 78–116]. In particular, every mean-
square continuous second-order stationary process η(t), t ∈ R, with mean zero can be
represented as

η(t) =

∫

R
e−iωt dη̂(ω), (4.3)

where η̂(ω) is the spectral process with orthogonal increments such that

E[η̂(a)− η̂(b)][η̂(c)− η̂(d)] = Fη
(
[a, b) ∩ [c, d)

)
.

Then
∫

R
g(ω) dη̂(ω) =

∫

R
ĝ(t)η(t) dt, g ∈ D(R),

where ĝ denotes the Fourier transform of g, D(R) is the space of all functions in C∞(R)
with compact support (see Appendix B). In particular, η(t) can be (generalized) white
noise. The integral

∫

R ĝ(t)η(t)dt can be handled by replacing it with the second-order sto-
chastic integral

∫

R g(ω)Zη(dω), where Zη is a random measure such that E|Zη([a, b))|2 =
= Fη([a, b)). Then

Dδη(t) =

∫

R
(−iω)δe−itω dη̂(ω) =

∫

R
(−iω)δe−itω Zη(dω). (4.4)

We will write ZX , ZW for the random measures corresponding to X(t) and W (t) of (4.2)
in this approach. Since (4.2) can be rewritten as(

D+bDδ + λ
)
X(t) = W (t), (4.5)

we have

ZX(dω) =
[
−iω+ b(−iω)δ + λ

]−1
ZW (dω).

Thus, there exists a stationary solution of equation (4.2) with λ > 0, b > 0 (Gaussian if
W (t) is Gaussian) of the form

X(t) =

∫

R
e−itω

1

−iω+ b(−iω)δ + λ
ZW (dω), 0 < δ < 1, (4.6)

where

E|ZW (dω)|2 = fW (ω) dω.

The spectral density of the process (4.6) is of the form

fX(ω) =
fW (ω)

|g(ω)|2
, ω ∈ R, (4.7)

where

g(ω) = −iω+ b(−iω)δ + λ = λ+ |ω|e− iπ
2 + b|ω|δe− iπδ

2 .

A direct calculation yields

|g(ω)|2 = λ2+|ω|2+2b|ω|1+δ cos
π(1− δ)

2
+2λb|ω|δ cos

πδ

2
+b2|ω|2δ, 0 < δ < 1,ω ∈ R.

(4.8)
Suppose now that the correlation function of the random noise W (t) is of the form

ρW (t) = c1(β)|t|β+1/2Kβ+1/2(|t|), t ∈ R, β > −1/2, (4.9)
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where

c1(β) =
[
Γ(β+ 1/2)2β−1/2

]−1
.

Here, Kµ(z) is the modified Bessel function of the third kind of order µ (Abramowitz
and Stegun [1]). Note that

Kµ(z) = K−µ(z), z > 0; Kµ(z) ∼ Γ(µ)2µ−1z−µ, z ↓ 0, µ > 0. (4.10)

From (4.9) and (4.10) we obtain ρW (0) = 1.
It is known (see Donoghue [19, p. 293]) that the spectral density which corresponds

to (4.9) has the form

fW (ω) =
c2(β)

(1 +ω2)β+1
, ω ∈ R, β > −1/2, (4.11)

where

c2(β) =
Γ(β+ 1)√
πΓ(β+ 1/2)

. (4.12)

From (4.7)–(4.11) we obtain the following theorem.

Theorem 4.1. There exists a stationary solution of the fractional Stokes–Boussinesq–
Langevin equation (4.2) with δ ∈ (0, 1), λ ≥ 0, b > 0 and stationary random noise W (t),
t ∈ R, with correlation function (4.9). The spectral density of this solution is given by

fX(ω) =
c2(β)/2π

(1 +ω2)β+1
[
λ2 +ω2 + 2b|ω|1+δ cos π(1−δ)2 + 2λb|ω|δ cos δπ2 + b2|ω|2δ

] ,
(4.13)

ω ∈ R, where δ ∈ (0, 1), β > −1/2 and c2(β) is defined by (4.12). The process X(t) is
Gaussian if W (t) is Gaussian.

Remark 4.1. If the parameter λ = 0 but b > 0, the spectral density (4.13) reduces to

fX(ω) =
c2(β)/2π

|ω|2δ(1 +ω2)β+1
(
b2 + |ω|2(1−δ) + 2b|ω|1−δ cos π(1−δ)2

) , (4.14)

where δ ∈ (0, 1/2), β > −1/2. This spectral density displays LRD for δ ∈ (0, 1/2).
The asymptotic properties of the spectral density (4.14) is similar to those of (4.1). We
therefore conclude that the stationary process described in Theorem 4.1 with λ = 0
provides a dynamic model of fractional Riesz–Bessel motion in the same way as the OU
process providing a dynamic model of Brownian motion.

Remark 4.2. A general form of equation (4.5) is(
AnDβny(t) + . . . + A1Dβ1y(t) + A0Dβ0

)
X(t) = W (t) (4.15)

with constant coefficients An, . . . , A1, A0 and βn > β1 > . . . > β1 > β0, n ≥ 1. The
spectral density of the stationary solution X(t) then takes the form (4.7) with

|g(ω)|2 = A2
0 +

n∑
j=1

A2
j |ω|2βj + 2

∑
1≤i<j≤n

AiAj |ω|βi+βj cos
βj − βi

2
π+

+ 2A0

n∑
j=1

Ai|ω|βj cos
βjπ

2
.

This spectral density belongs to L1(R) if βn > 1/2 or βi + βj > 1, i, j ∈ {1, . . . , n}.
If A0 = 0, this spectral density displays LRD of the form O

(
|ω|−2β1

)
as |ω| → 0 for

β1 ∈ (0, 1/2) and second-order intermittency of the form O
(
|ω|−2βn

)
as |ω| → ∞.
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Appendix A. Dynamic models of Brownian motion and related processes

This appendix is based on Kubo [36], Nelson [48], Hauge and Martin-Löf [29], Kubo
et al. [37], Okabe [52], Mainardi and Pironi [41]. Our aim is to recall a few historical
facts which clarify our considerations in Sections 2 and 3. The term “Brownian particle”
refers to a body of microscopically visible size suspended in a fluid. Its motion is caused
by a molecular bombardment of the fluid and is called Brownian motion because it was
first described by Robert Brown, a botanist, in 1827 (see Nelson [48] for some interesting
historical facts).

The first mathematical theory of Brownian motion was proposed by Einstein [22] and
Smoluchowski [61] based on the kinetic theory of heat. Einstein derived the diffusion
equation or heat equation for the transition probability density of the position of a
Brownian particle as

∂p

∂t
= D ∂2p

∂x2
,

where D is a positive constant, called the diffusion coefficient. The second part of Ein-
stein’s argument relates D to other physical quantities (see Einstein’s relation (A.7)
below). A more rigorous theory was developed by Wiener [65]. Therefore Brownian
motion is also known as the Wiener process.

Langevin [38] initiated, and Uhlenbeck and Ornstein [63] developed the equation of
the motion of a Brownian particle of mass m. This theory is derived from Newton’s
second law: F = ma, which in this special case reads

m
d2x(t)

dt2
= F (t) + W (t), (A.1)

where x(t) is the position of the particle, F (t) is the frictional force (due to the fluid)
and W (t) denotes the random force arising from rapid thermal fluctuations. Equation
(A.1) can be equivalently rewritten as the following system of two equations:

dx(t)

dt
= ξ(t), m

dξ(t)

dt
= F (t) + W (t), (A.2)

where ξ(t) is the velocity of the particle. Assuming for the frictional force the Stokes
expression for the drag of a spherical particle of radius a, it is given by

F = − 1

µ
ξ(t),

1

µ
= 6πaρν,

where µ denotes the mobility coefficient and ρ and ν are the density and the kinematic
viscosity of the fluid, respectively. The constant σ = mµ is called the friction character-
istic time. Thus, the Langevin equation (A.1) reads

dξ(t)

dt
= − 1

σ
ξ(t) +

1

m
W (t). (A.3)

We assume that the Brownian particle has been kept for a sufficiently long time in the
fluid at absolute temperature T. Then, for any time t, the equilibrium law for the energy
distribution requires that

mE
(
ξ2(t)

)
= κT,

where κ is the Boltzmann constant (a knowledge of κ is equivalent to a knowledge of Avo-
gadro’s number and hence of molecular sizes). If we assume that there exists a Gaussian
stationary solution to the Langevin equation (A.3), then the previous assumptions lead
to the following expressions for the covariance functions of the velocity of the Brownian
particle and the noise term:

E
(
ξ(t)ξ(s)

)
= E

(
ξ2(0)

)
e−|t−s|/σ =

κT

m
e−|t−s|/σ, (A.4)
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E
(
W (t)W (s)

)
=

m2

σ
E
(
ξ2(0)

)
δ(t− s) =

mκT

σ
δ(t− s), (A.5)

where t, s ∈ R and δ(τ) denotes the Dirac distribution. The constant (finite of infinite)

D = σE
(
ξ2(0)

)
=

∫ ∞

0

E
(
ξ(τ)ξ(0)

)
dτ = lim

t→∞

EX2(t)

2t
(A.6)

is known as the diffusion coefficient and the Einstein relation

D =
σκT

m
= µκT (A.7)

holds.
The Langevin equation (A.3) and Einstein relation (A.7) have been extremely useful

in statistical physics and financial mathematics (see Shiryaev [60], for example). It is
interesting to note that Bachelier [8] made the first attempt towards a mathematical de-
scription of the evolution of stock prices (on the Paris market) on the basis of probabilistic
concepts analogous to Brownian motion.

In the theory of hydrodynamics, the Langevin equation (A.3) needs to be modified,
since it ignores the effect of the added mass and retarded viscous force, which are due to
the acceleration of the particle (see Hauge and Martin-Löf [29], for example). The added
mass effect requires to substitute the mass of the particle m with the so-called effective
mass given by

m∗ = m[1 + ρ/(2ρ0)],

where ρ0 denotes the density of the particle. Keeping the Stokes drag law unmodified,
the relaxation time changes from σ = mµ to σ∗ = m∗µ. The corresponding Langevin
equation then has the form (A.3) with m replaced by m∗ and σ by σ∗. Consequently,
the diffusion coefficient is unmodified and turns out to be

D = σ∗E
(
ξ2(0)

)
= µκT,

so the Einstein relation (A.7) still holds.
The retarded viscous force effect is due to an additional term to the Stokes drag, which

is related to the history of the particle acceleration. This additional drag force, proposed
by Stokes [62], Boussinesq [11] and Basset [10], is referred to as the Basset history force
(see Hauge and Martin-Löf [29] or Maxey and Riley [42], for example). In our notation,

F (t) = − 1

µ

a√
πν

∫ t

b

dξ(τ)/dτ√
t− τ

dτ = − a

µ
√
ν

bD1/2
C ξ(t), (A.8)

where bD1/2
C ξ(t) is the fractional derivative (2.13) of order 1/2 in the Caputo sense (see

Caputo [13], Caputo and Mainardi [14], Mainardi and Pironi [41]). Then using (A.3),
(A.8), the generalised Langevin equation or Stokes–Boussinesq–Langevin equation turns
out to be

dξ(t)

dt
= − 1

σ∗
ξ(t)− a

σ∗
√
ν

bD1/2
C ξ(t) +

1

m∗
W (t). (A.9)

It is worth noting that if the process is in thermodynamic equilibrium (at b = 0), we
would account for the long memory of hydrodynamic interaction, and thus it is correct
to integrate equation (A.9) from b = −∞. On the other hand Dufty [20] proposed in the
case b = 0 to modify the random force by replacing W (t) by

W ∗(t) = W (t)− a

µ
√
πν

∫ 0

−∞

dξ(τ)/dτ√
t− τ

dτ.

In any case, the fluctuation–dissipation theory of Kubo [36] proposes to introduce a mem-
ory function, and one of the possible memory functions gives us the Stokes–Boussinesq–
Langevin equation (A.9) or more general equation (1.6) or (4.2). This is the reason
why we study in this paper the fractional version of the Stokes–Boussinesq–Langevin
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equation (1.6) or (4.2), which can also be called Langevin equation with Basset history
force. Our consideration suggests useful models for financial mathematics in view of
significant analogies (see again Shiryaev [60]) between Newtonian mechanics and stock
price motions.

Appendix B. Random distributions

We denote by H the Hilbert space of C-valued random variables, defined on a proba-
bility space (Ω,F ,P), with zero expectation and finite variance:

(f, g) = E[fḡ], ‖f‖ = (f, f)
1
2 .

By D(R) we denote the space of all φ ∈ C∞(R) with compact support, endowed with
the usual topology. A random distribution is a linear and continuous map from D(R) to
H. A random distribution X is stationary if(

X(τhφ), X(τhψ)
)

=
(
X(φ), X(ψ)

)
for all φ,ψ ∈ D(R) and h ∈ R, where τhφ(t) = φ(t + h). We then denote by µX its
spectral measure: (

X(φ), X(ψ)
)

=

∫ ∞

−∞
φ̂(ξ)ψ̂(ξ)µX(dξ),

where φ̂ is the Fourier transform of φ, namely φ̂(ξ) =
∫∞
−∞ e−itξφ(t) dt. Any stationary

random distribution X has the following spectral representation:

X(φ) =

∫ ∞

−∞
φ̂(ξ)ZX(dξ),

where ZX is the orthogonal measure corresponding to the spectral measure µX(dξ):

E|Z(dξ)|2 = µX(dξ). We write Ẋ for the derivative of a random distribution X:

Ẋ(φ) = −X
(
φ̇
)
.

Let X and Y be random distributions. Then X is said to be stationarily correlated
with Y if

(
X(τhφ), Y (τhψ)

)
=
(
X(φ), Y (ψ)

)
for all φ,ψ ∈ D(R) and h ∈ R; this

is equivalent to
(
X(t + s), Y (s)

)
=
(
X(t), Y (0)

)
for all t, s ∈ R if X and Y are both

processes. We denote by M(Y ) the closed linear hull of {Y (φ) : φ ∈ D(R)} in H. Then
we have M(Y ) =

{
∫∞
−∞ g(ξ)dZY (ξ), g ∈ L2(µY )

}
. A stationary random distribution Y

is said to be purely non-deterministic if
⋂
t∈R

Mt(Y ) = {0}, that is, the remote past does

not contain any information at all.

Appendix C. Canonical representation

Suppose that X is a purely non-deterministic process, then X has a spectral density
f = {f(ω),ω ∈ R} of the Hardy class:

(1 +ω2)−1 log f(ω) ∈ L1(R).

Following Dym and McKean [21] we write h for the outer function of X :

h(ζ) = exp

{
1

2πi

∫

R

1 +ωζ

ω− ζ
log f(ω)

1 +ω2
dω

}
, Im ζ > 0, (C.1)

and E for the canonical representation kernel of X, that is, E = ĥ, where ĥ is the Fourier
transform of

h(·) = lim
η↓0

h(·+ iη) ∈ L2(R),

i. e.,

ĥ(t) = lim
M→∞

∫ M

−M
e−itξh(ξ) dξ.
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We have

h(ζ) =
1

2π

∫ ∞

0

eiζtE(t) dt, Im ζ > 0, (C.2)

and

X(t) =
1√
2π

∫ t

−∞
E(t− s) dB(s), E ∈ L2(R), (C.3)

or

R(t) =
1√
2π

∫ ∞

0

E(|t|+ s)E(s) ds (C.4)

is called the canonical representation of X, where B = {B(t), t ∈ R} is the standard
Brownian motion. Note that the representations (C.3) and (C.4) play an important role
in the prediction theory of stationary processes.
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29. E. H. Hauge and A. Martin-Löf, Fluctuating hydrodynamics and Brownian motion, J. Stat.

Physics, 7 (1973), no. 3, 259–281.

30. G. C. Hegerfeldt, From Euclidean to relativistic fields and on the notion of Markov fields,

Comm. Math. Phys., 35 (1974), 155–171.

31. T. Hida and L. Streit, On Quantum theory in terms of white noise, Nagoya Math. J., 68 (1977),

21–34.

32. E. Igloi and G. Terdik, Bilinear stochastic systems with fractional Brownian motion input, Ann.

Appl. Probab., 9 (1999), no. 1, 46–77.

33. A. Inoue, On the equations of stationary processes with divergent diffusion coefficients, J. Fac.

Sci. Univ. Tokyo, Sect. IA, 40 (1993), 307–336.

34. A. Inoue and Y. Kasahara, On the asymptotic behaviour of the prediction error of a stationary

process, N. Kono and N.-R. Shieh (Eds.), Trends in Probability and Related Analysis, World

Scientific, 207–218, 1999.

35. S. C. Kou and X. S. Xie, Generalized Langevin equation with fractional Gaussian noise: Subd-
iffusion within a single protein molecule, Phys. Rev. Lett., 93 (2004), 180603.

36. R. Kubo, The fluctuation-dissipation theorem, Report on Progress in Physics, 29 (1966), 255–
284, Part I.

37. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Me-
chanics, Springer-Verlag, Berlin, 1978.
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ÄÐÎÁÎÂÅ ÐIÂÍßÍÍß ÑÒÎÊÑÀ�ÁÓCÑIÍÅÑÊÀ�ËÀÍÆÅÂÅÍÀ
ÒÀ ÌIÒÒÀÃ-ËÅÔÔËÅÐIÂÑÜÊÅ ÑÏÀÄÀÍÍß ÊÎÐÅËßÖI�

Â. Â. ÀÍ, Ì. Ì. ËÅÎÍÅÍÊÎ

Àíîòàöiÿ. Ðîçãëÿäàþòüñÿ ñòàöiîíàðíi ïðîöåñè, ÿêi ¹ ðîçâ'ÿçêàìè äðîáîâîãî ðiâíÿííÿ Ñòîêñà �
Áóñciíåñêà �Ëàíæåâåíà. Òàêi ïðîöåñè ìàþòü âëàñòèâîñòi ðåôëåêòîðíî¨ ïîçèòèâíîñòi òà ¨õ êîðå-
ëÿöiéíi ôóíêöi¨ óçãîäæåíi ç åôåêòîì Àäëåðà �Âàéíðàéòà, àáî ìàþòü äîâãîòåðìiíîâó çàëåæíiñòü,
ÿêà çîáðàæà¹òüñÿ ó òåðìiíàõ ôóíêöi¨ Ìiòòàã-Ëåôôëåðà. Òàêi âëàñòèâîñòi äîñÿãàþòüñÿ âèêîðè-
ñòàííÿì òåîði¨ ðiâíÿííÿ Êóáî �Ìîði �Îêàáå(KMO) �Ëàíæåâåíà ó êîìáiíàöi¨ ç ôóíêöiÿìè Ìiòòàã-
Ëåôôëåðà òà äðîáîâèìè ïîõiäíèìè. Äîñëiäæåíî òàêîæ çâ'ÿçîê iç äðîáîâèì ðóõîì Ðiññà �Áåññåëÿ.
Öåé çâ'ÿçîê äîçâîëÿ¹ âèâ÷àòè îäíî÷àñíî åôåêò äîâãîòåðìiíîâî¨ çàëåæíîñòi òà ïåðåìiæíîñòi.

ÄÐÎÁÍÎÅ ÓÐÀÂÍÅÍÈÅ ÑÒÎÊÑÀ�ÁÓÑÑÈÍÅÑÊÀ�ËÀÍÆÅÂÅÍÀ
È ÌÈÒÒÀÃ-ËÅÔÔËÅÐÎÂÑÊÎÅ ÓÁÛÂÀÍÈÅ ÊÎÐÐÅËßÖÈÈ

Â. Â. ÀÍ, Í. Í. ËÅÎÍÅÍÊÎ

Àííîòàöèÿ. Îáñóæäàþòñÿ ñòàöèîíàðíûå ïðîöåññû, ÿâëÿþùèåñÿ ðåøåíèåì äðîáíîãî óðàâíåíèÿ
Ñòîêñà �Áóññèíåñêà �Ëàíæåâåíà. Ýòè ïðîöåññû èìåþò ñâîéñòâî îòðàæåííîé ïîçèòèâíîñòè è èõ
êîððåëÿöèîííûå ôóíêöèè ìîãóò áûòü ñîãëàñîâàíû ñ ýôôåêòîì Àäëåðà �Âàéíðàéòà, èëè èìåþò
äîëãîñðî÷íóþ çàâèñèìîñòü, âûðàæàåìóþ â òåðìèíàõ ôóíêöèè Ìèòòàã-Ëåôôëåðà. Ýòè ñâîéñòâà
óñòàíîâëåíû ñ èñïîëüçîâàíèåì òåîðèè óðàâíåíèÿ Êóáî �Ìîðè �Îêàáå(ÊÌÎ) �Ëàíæåâåíà, êîìáè-
íèðîâàííîé ñ ôóíêöèÿìè Ìèòòàã-Ëåôôëåðà è äðîáíûìè ïðîèçâîäíûìè. Èññëåäîâàíà òàêæå ñâÿçü
ñ äðîáíûì äâèæåíèåì Ðèññà �Áåññåëÿ. Ýòà ñâÿçü ïîçâîëÿåò èçó÷àòü îäíîâðåìåííî ýôôåêò äîëãî-
ñðî÷íîé çàâèñèìîñòè è ïåðåìåæàåìîñòè.


